A 11.3-16.6-GHz VCO With Constructive Switched Magnetic Coupling in 65-nm CMOS

被引:1
|
作者
Lyu, Yuetong [1 ]
Song, Changwenquan [1 ]
Qin, Pei [2 ]
Wu, Liang [1 ]
机构
[1] Chinese Univ Hong Kong, Sch Sci & Engn SSE, Guangdong Hong Kong Macao Joint Lab Millimeter Wa, Shenzhen 518172, Peoples R China
[2] South China Univ Technol, Sch Microelect, Guangdong Hong Kong Macao Joint Lab Millimeter Wa, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
CMOS; dual-band; figure-of-merit (FoM); phase noise; quality factor (Q); constructive switched magnetic coupling (CSMC); tuning range; voltage-controlled oscillator (VCO); WIDE TUNING-RANGE; DESIGN; NOISE; INDUCTOR;
D O I
10.1109/JETCAS.2023.3344510
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional transformer-based magnetic tuning has demonstrated dual-band or even multi-band operation for voltage-controlled oscillators (VCOs). However, the destructive magnetic coupling employed introduces implicit loss to the transformer thus degrading its quality factor (Q), and achieves a continuous frequency coverage resulting in inferior performance. To address this issue, this paper proposes a constructive switched magnetic coupling (CSMC) technique, realizing dual-band operation with the Q improvement into one band due to the in-phase coupling and the explicit switch. For validation, a transformer employing the CSMC technique is designed and deployed in a dual-band VCO design. Fabricated in a 65-nm CMOS process, the VCO is measured with an oscillation frequency range of 37.8%, from 11.3 to 16.6 GHz, while consuming 2.5-mW from a 0.65-V voltage supply. Within the entire frequency coverage, the measured phase noise ranges from -129.6 to -123.7 at 10-MHz offset, resulting in FoM of 186-192.1 dBc/Hz. The core area of the chip is 0.43 x 0.25 mm(2) excluding pads.
引用
收藏
页码:133 / 141
页数:9
相关论文
共 50 条
  • [21] A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology
    Razavi, Behzad
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (04) : 894 - 903
  • [22] A digitally controlled 2.4-GHz oscillator in 65-nm CMOS
    Xu, Liangge
    Lindfors, Saska
    Stadius, Kari
    Ryynanen, Jussi
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2009, 58 (01) : 35 - 42
  • [23] A digitally controlled 2.4-GHz oscillator in 65-nm CMOS
    Liangge Xu
    Saska Lindfors
    Kari Stadius
    Jussi Ryynänen
    Analog Integrated Circuits and Signal Processing, 2009, 58 : 35 - 42
  • [24] A 130-GHz OOK Transmitter in 65-nm CMOS Technology
    Kim, Namhyung
    Son, Heekang
    Kim, Dong-Hyun
    Rieh, Jae-Sung
    2016 IEEE 16TH TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SIRF), 2016, : 113 - 115
  • [25] A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology
    Razavi, Behzad
    2010 SYMPOSIUM ON VLSI CIRCUITS, DIGEST OF TECHNICAL PAPERS, 2010, : 113 - 114
  • [26] A 204-234.5-GHz Wideband Amplifier in 65-nm CMOS
    Qi, Hao
    Wen, Jincai
    An, Donggang
    Wang, Xun
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 3000 - 3004
  • [27] A 60-GHz SPST Switch in 65-nm CMOS Technology
    Apriyana, Anak Agung Alit
    Zhang, Yue Ping
    2014 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT): SILICON TECHNOLOGY HEATS UP FOR THZ, 2014,
  • [28] A digitally controlled 2.4-GHz oscillator in 65-nm CMOs
    Xu, Liangge
    Lindfors, Saska
    2007 NORCHIP, 2007, : 96 - 99
  • [29] 80-GHz and 40-GHz Frequency Dividers in 65-nm CMOS
    Matsumura, Hiroshi
    APMC: 2009 ASIA PACIFIC MICROWAVE CONFERENCE, VOLS 1-5, 2009, : 297 - 300
  • [30] A low phase noise quadrature VCO using super-harmonic coupling technique in 65-nm CMOS technology
    Ghasemi, Razieh
    Karami, Mohammad Azim
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2024, 52 (01) : 97 - 110