Effects of co-existence of copper and sulfur on CH4 and N2O emissions from paddy soils and the mechanism

被引:0
|
作者
Feng, Lian-Jie [1 ]
Gong, Ye-Sha [1 ]
Ding, Min [1 ]
Jiang, Jing-Yan [1 ]
机构
[1] College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing,210095, China
关键词
Copper - Copper compounds - Gas emissions - Greenhouse effect - Greenhouse gases - Heavy metals - Soil pollution - Soils - Sulfur - Urea;
D O I
暂无
中图分类号
学科分类号
摘要
In order to investigate the effect of co-existence of copper (Cu) and sulfur (S) in acidic paddy soils on greenhouse gas emissions, this study conducted an indoor flooding incubation experiment with thirteen treatments including CK, CuCl2, CuSO4 (5, 50, and 100mg Cu/kg), KCl, and K2SO4 (with anionic concentrations equal to that of the six Cu treatments), respectively. Urea was used as the nitrogen source. A total of 128d of incubation was prepared for sufficient aging of heavy metals in the soil. The results showed that acidic soils significantly promoted the release of available Cu (P2+ and SO42- addition, but the Cu-S coexistence treatment reduced the effectiveness of each other. Compared with CK, the treatments of 5mg/kg Cu and different concentrations of KCl and K2SO4 decreased CH4 and N2O emissions by 19.4%~56.2% and 36.1%~84.5%, but 50 and 100mg/kg Cu significantly increased CH4 and N2O emissions of 28.9% to 615.2% and 97.5% to 337.4% (P2SO4 treatments significantly reduced N2O emissions by 74.1% and 69.6% (P4emissions (P>0.05). Compared with CuCl2 treatment, medium and high concentration of CuSO4 treatments significantly reduced the emission of CH4and N2O (P4 emission by reducing the abundance of methanogenic archaea (mcrA) and methanogenic bacterial functional genes (16S rRNA-CH4). Moreover, the coexistence of Cu-S promoted N2O emission by increasing ammonia monooxygenase functional gene (AOB amoA) abundance during early incubation (0~35d), whereas increased nitrous oxide reductase functional gene (nosZ) abundance during late period (35~128d) to reduce N2O emission. This study shows that the variable valence anion can significantly affect the microbial process of greenhouse gas production involving heavy metal cations, and the study of this interaction process has profound significance for the correct evaluation of GHGs emissions from farmland soil polluted by heavy metal. © 2024 Chinese Society for Environmental Sciences. All rights reserved.
引用
收藏
页码:3030 / 3039
相关论文
共 50 条
  • [21] Effects of biochar addition on N2O and CO2 emissions from two paddy soils
    Wang, Jinyang
    Zhang, Man
    Xiong, Zhengqin
    Liu, Pingli
    Pan, Genxing
    BIOLOGY AND FERTILITY OF SOILS, 2011, 47 (08) : 887 - 896
  • [22] Effects of fertilization on microbial abundance and emissions of greenhouse gases (CH4 and N2O) in rice paddy fields
    Fan, Xianfang
    Yu, Haiyang
    Wu, Qinyan
    Ma, Jing
    Xu, Hua
    Yang, Jinghui
    Zhuang, Yiqing
    ECOLOGY AND EVOLUTION, 2016, 6 (04): : 1054 - 1063
  • [23] Greenhouse gas (CO2, CH4, N2O) emissions from soils following afforestation in central China
    Dou, Xiaolin
    Zhou, Wei
    Zhang, Quanfa
    Cheng, Xiaoli
    ATMOSPHERIC ENVIRONMENT, 2016, 126 : 98 - 106
  • [24] Seasonal dynamics of CO2, CH4, N2O, and NO emissions from peat soils of the Yakhroma River floodplain
    Novikov, VV
    Stepanov, AL
    Pozdnyakov, AI
    Lebedeva, EV
    EURASIAN SOIL SCIENCE, 2004, 37 (07) : 755 - 761
  • [25] N2O, CH4, and CO2 Emissions from Continuous Flooded, Wet, and Flooded Converted to Wet Soils
    Khalid, Muhammad Salman
    Shaaban, Muhammad
    Hu, Ronggui
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2019, 19 (02) : 342 - 351
  • [26] N2O, CH4, and CO2 Emissions from Continuous Flooded, Wet, and Flooded Converted to Wet Soils
    Muhammad Salman Khalid
    Muhammad Shaaban
    Ronggui Hu
    Journal of Soil Science and Plant Nutrition, 2019, 19 : 342 - 351
  • [27] Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar
    Zhou, Beibei
    Feng, Yanfang
    Wang, Yueman
    Yang, Linzhang
    Xue, Lihong
    Xing, Baoshan
    CHEMOSPHERE, 2018, 204 : 474 - 482
  • [28] Emissions of CH4 and N2O from a Wetland in Sanjiang Plain
    Guo, Yafen
    Wang, Zhenfen
    Song, Jinfeng
    ADVANCES IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-6, 2012, 518-523 : 4859 - 4862
  • [29] Azolla incorporation and dual cropping influences CH4 and N2O emissions from flooded paddy ecosystems
    Kimani, Samuel Munyaka
    Bimantara, Putu Oki
    Hattori, Satoshi
    Tawaraya, Keitaro
    Sudo, Shigeto
    Cheng, Weiguo
    SOIL SCIENCE AND PLANT NUTRITION, 2020, 66 (01) : 152 - 162
  • [30] Influence of controlled irrigation on CH4 and N2O emissions from paddy fields and subsequent greenhouse effect
    Peng, Shi-Zhang
    Yang, Shi-Hong
    Xu, Jun-Zeng
    Shuikexue Jinzhan/Advances in Water Science, 2010, 21 (02): : 235 - 240