SafeTPU: A Verifiably Secure Hardware Accelerator for Deep Neural Networks

被引:0
|
作者
Mera Collantes, Maria I. [1 ]
Ghodsi, Zahra [1 ]
Garg, Siddharth [1 ]
机构
[1] New York University, Department of Electrical and Computer Engineering, United States
来源
关键词
Area overhead - Fault injection attacks - Hardware accelerators - High probability - Interactive proofs - Secure computation - Space and time - State of the art;
D O I
9107564
中图分类号
学科分类号
摘要
26
引用
收藏
相关论文
共 50 条
  • [31] Embedded Streaming Deep Neural Networks Accelerator With Applications
    Dundar, Aysegul
    Jin, Jonghoon
    Martini, Berin
    Culurciello, Eugenio
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (07) : 1572 - 1583
  • [32] Spiker: an FPGA-optimized Hardware accelerator for Spiking Neural Networks
    Carpegna, Alessio
    Savino, Alessandro
    Di Carlo, Stefano
    2022 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2022), 2022, : 14 - 19
  • [33] An Efficient Hardware Accelerator for Structured Sparse Convolutional Neural Networks on FPGAs
    Zhu, Chaoyang
    Huang, Kejie
    Yang, Shuyuan
    Zhu, Ziqi
    Zhang, Hejia
    Shen, Haibin
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (09) : 1953 - 1965
  • [34] Optimizing Accelerator on FPGA for Deep Convolutional Neural Networks
    Dong, Yong
    Hu, Wei
    Wang, Yonghao
    Jiao, Qiang
    Chen, Shuang
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2020, PT II, 2020, 12453 : 97 - 110
  • [35] BSHIFT: A Low Cost Deep Neural Networks Accelerator
    Yong Yu
    Tian Zhi
    Xuda Zhou
    Shaoli Liu
    Yunji Chen
    Shuyao Cheng
    International Journal of Parallel Programming, 2019, 47 : 360 - 372
  • [36] A Design Framework for Hardware Approximation of Deep Neural Networks
    Lin, Wei-Hung
    Kao, Hsu-Yu
    Huang, Shih-Hsu
    2019 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2019,
  • [37] Benchmarking Deep Spiking Neural Networks on Neuromorphic Hardware
    Ostrau, Christoph
    Homburg, Jonas
    Klarhorst, Christian
    Thies, Michael
    Rueckert, Ulrich
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT II, 2020, 12397 : 610 - 621
  • [38] Efficient Softmax Hardware Architecture for Deep Neural Networks
    Du, Gaoming
    Tian, Chao
    Li, Zhenmin
    Zhang, Duoli
    Yin, Yongsheng
    Ouyang, Yiming
    GLSVLSI '19 - PROCEEDINGS OF THE 2019 ON GREAT LAKES SYMPOSIUM ON VLSI, 2019, : 75 - 80
  • [39] A Fast Compressed Hardware Architecture for Deep Neural Networks
    Ansari, Anaam
    Shelton, Allen
    Ogunfunmi, Tokunbo
    Panchbhaiyye, Vineet
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 370 - 374
  • [40] Analog-memory-based 14nm Hardware Accelerator for Dense Deep Neural Networks including Transformers
    Okazaki, Atsuya
    Narayanan, Pritish
    Ambrogio, Stefano
    Hosokawa, Kohji
    Tsai, Hsinyu
    Nomura, Akiyo
    Yasuda, Takeo
    Mackin, Charles
    Friz, Alexander
    Ishii, Masatoshi
    Kohda, Yasuteru
    Spoon, Katie
    Chen, An
    Fasoli, Andrea
    Rasch, Malte J.
    Burr, Geoffrey W.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3319 - 3323