Parameter co-evolution mechanism of particle swarm optimisation algorithm

被引:0
|
作者
Zhao M. [1 ]
Song X. [1 ]
Gao Y. [2 ]
机构
[1] Information and Control Engineering Faculty, Shenyang Jianzhu University, Shenyang, Liaoning Province
[2] Information Technology Department, Shenyang Gas Co. Ltd., Shenyang, Liaoning Province
关键词
Acceleration factor; Adjustment mechanism; Benchmark functions; Inertia weight; Numerical optimisation; Parameter co-evolution; Particle swarm optimisation; Population evolution; PSO; Stochastic evolution speed;
D O I
10.1504/IJSPM.2020.107327
中图分类号
学科分类号
摘要
The running parameters are the important factors that influence the performance of PSO, and the optimisation of the selection and the adjustment strategy on them is one of the hot research directions. Based on the related research, this paper designs a co-evolution mechanism for the parameters of PSO including both the inertia weight and the acceleration factors, which defines stochastic evolution speed to reflect the current state of population evolution during the iterative process, and uses it as the feedback to set the inertia weight and the two acceleration factors. PSO with the parameter co-evolution mechanism can realise cooperative evolution of the running parameters with the population by dynamically adjusting parameter values according to population evolution state. Compared with five widely recognised parameter selection or adjustment strategies, on 20 numerical optimisation benchmark functions of different categories, the effectiveness and the efficiency of the proposed mechanism are verified. © 2020 Inderscience Enterprises Ltd.
引用
收藏
页码:255 / 267
页数:12
相关论文
共 50 条
  • [21] Bacterial foraging optimisation algorithm, particle swarm optimisation and genetic algorithm: a comparative study
    Sadeghiram, Soheila
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2017, 10 (04) : 275 - 282
  • [22] Multi-region particle swarm optimisation algorithm
    Fan J.-S.
    Fan, J.-S. (fjsszw2005@126.com), 2012, Inderscience Publishers (44) : 117 - 123
  • [23] Differential evolution and particle swarm optimisation in partitional clustering
    Paterlini, S
    Krink, T
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (05) : 1220 - 1247
  • [24] Adaptive Parameter based Particle Swarm Optimisation for Accelerometer Calibration
    Dhalwar, Suraj
    Kottath, Rahul
    Kumar, Vipan
    Raj, Alex Noel Joseph
    Poddar, Shashi
    PROCEEDINGS OF THE FIRST IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, INTELLIGENT CONTROL AND ENERGY SYSTEMS (ICPEICES 2016), 2016,
  • [25] Staff Scheduling with Particle Swarm Optimisation and Evolution Strategies
    Nissen, Volker
    Guenther, Maik
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2009, 5482 : 228 - 239
  • [26] Hybrid particle swarm optimisation algorithm for image segmentation
    Zhang, Jian-de
    Lu, Jin-gui
    Li, Hong-liang
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 14 (04) : 317 - 323
  • [27] Multi-region particle swarm optimisation algorithm
    Fan, Ji-Shan
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 44 (02) : 117 - 123
  • [28] A Synchronous-Asynchronous Particle Swarm Optimisation Algorithm
    Ab Aziz, Nor Azlina
    Mubin, Marizan
    Mohamad, Mohd Saberi
    Ab Aziz, Kamarulzaman
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [29] Parameter analysis of particle swarm optimization algorithm
    Yao, Yao-Zhong
    Xu, Yu-Ru
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2007, 28 (11): : 1242 - 1246
  • [30] Multi-objective optimisation by co-operative co-evolution
    Maneeratana, K
    Boonlong, K
    Chaiyaratana, N
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN VIII, 2004, 3242 : 772 - 781