Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane

被引:0
|
作者
You Linlin [1 ,2 ]
Guo Yandong [2 ]
He Yanjing [1 ,2 ]
Huo Feng [1 ]
Zeng Shaojuan [1 ]
Li Chunshan [1 ]
Zhang Xiangping [1 ,3 ,4 ]
Zhang Xiaochun [1 ]
机构
[1] Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing , China
[2] College of Mathematics and Physics, Bohai University, Jinzhou , China
[3] School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing , China
[4] Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou ,
关键词
carbon dioxide; ionic liquid; 6FDA-TeMPD; composite membrane; molecular dynamics simulation;
D O I
暂无
中图分类号
TQ127.12 [];
学科分类号
摘要
Ionic liquid (IL)/polyimide (PI) composite membranes demonstrate promise for use in CO2 separation applications. However, few studies have focused on the microscopic mechanism of CO2 in these composite systems, which is important information for designing new membranes. In this work, a series of systems of CO2 in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide composited with 4,4-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-based PI, 6FDA-2,3,5,6-tetramethyl-1,4-phenylene-diamine, at different IL concentrations were investigated by all-atom molecular dynamics simulation. The formation of IL regions in PI was found, and the IL regions gradually became continuous channels with increasing IL concentrations. The analysis of the radial distribution functions and hydrogen bond numbers demonstrated that PI had a stronger interaction with cations than anions. However, the hydrogen bonds among PI chains were destroyed by the addition of IL, which was favorable for transporting CO2. Furthermore, the self-diffusion coefficient and free energy barrier suggested that the diffusion coefficient of CO2 decreased with increasing IL concentrations up to 35 wt-% due to the decrease of the fractional free volume of the composite membrane. However, the CO2 self-diffusion coefficients increased when the IL contents were higher than 35 wt-%, which was attributed to the formation of continuous IL domain that benefitted the transportation of CO2.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 50 条
  • [21] CO2 capture and separation by ionic liquid-metal organic framework composite materials
    Cao M.
    Han C.
    Yang F.
    Chen Y.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (11): : 5831 - 5841
  • [22] Ionic Liquid/Metal-Organic Framework Composite for CO2 Capture: A Computational Investigation
    Chen, Yifei
    Hu, Zhongqiao
    Gupta, Krishna M.
    Jiang, Jianwen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (44): : 21736 - 21742
  • [23] Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture
    Karunakaran, M.
    Villalobos, L. F.
    Kumar, M.
    Shevate, R.
    Akhtar, F. H.
    Peinemann, K. -V.
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (02) : 649 - 656
  • [24] Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes
    Tachibana, Shogo
    Hashimoto, Kei
    Mizuno, Haruna
    Ueno, Kazuhide
    Watanabe, Masayoshi
    POLYMER, 2022, 241
  • [25] CO2 capture by a task-specific ionic liquid
    Bates, ED
    Mayton, RD
    Ntai, I
    Davis, JH
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (06) : 926 - 927
  • [26] Synthesis and CO2 capture properties of poly(ionic liquid)
    Xu, Haitao
    Liao, Jianhua
    Liang, Hongbo
    Xing, Yuepeng
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2014, 30 (10): : 154 - 158
  • [27] Hybrid ionic liquid capsules for rapid CO2 capture
    Huang, Qianwen
    Luo, Qinmo
    Wang, Yifei
    Pentzer, Emily
    Gurkan, Burcu
    Industrial and Engineering Chemistry Research, 2019, 58 (24):
  • [28] A Review of CO2 Capture by Poly(Ionic liquid)s
    Soni, Rajdip
    Biswas, Rima
    Recent Innovations in Chemical Engineering, 2022, 15 (02) : 72 - 85
  • [29] Structure design of photosensitive ionic liquid for CO2 capture
    Zhang, Ruinan
    Guo, Yandong
    Cao, Bobo
    Lu, Yumiao
    Dong, Haifeng
    Huo, Feng
    Ding, Wei-Lu
    CHEMICAL ENGINEERING SCIENCE, 2025, 305
  • [30] Hybrid Ionic Liquid Capsules for Rapid CO2 Capture
    Huang, Qanwen
    Luo, Qinmo
    Wang, Yifei
    Pentzer, Emily
    Gurkan, Burcu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (24) : 10503 - 10509