Microfluidic Avenue to Manipulate Polycrystalline Materials: A Case Study of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-Hexaazaisowurtzitane

被引:0
|
作者
Shi, Jinyu [1 ,2 ]
Fei, Yipeng [1 ,3 ]
Xia, Haoxuan [1 ,3 ]
Zhou, Xingyi [1 ,3 ]
Yu, Qiong [1 ,3 ]
Zhu, Peng [1 ,3 ]
Shen, Ruiqi [1 ,3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem & Chem Engn, Nanjing 210094, Peoples R China
[2] China Acad Engn Phys CAEP, Inst Chem Mat, Mianyang 621900, Peoples R China
[3] Nanjing Univ Sci & Technol, Micronano Energet Devices Key Lab, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
CL-20; NUCLEATION; EPSILON; CRYSTALLIZATION; TRANSFORMATION; PRECIPITATION; POLYMORPHS; MORPHOLOGY; STABILITY; GROWTH;
D O I
10.1021/acs.cgd.4c00278
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymorphic transformation is of paramount importance as it significantly influences the physical, chemical, and functional properties of materials, with profound implications in fields ranging from advanced materials engineering to high-energy material science. However, there is difficulty in understanding transformation mechanisms, achieving precise control over transformation processes, and addressing the stability of polymorphs. This work sets its sights on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), a typical polycrystalline explosive, and innovatively embarks on the development of a control strategy for polymorphic transformation from both mechanistic and experimental perspectives by microfluidics. We delve into the microscopic transformation mechanisms from the alpha-form to the beta-form and eventually to the epsilon-form, utilizing molecular dynamics simulations incorporating thermodynamic and kinetic principles. To control these transitions, a custom-engineered coaxial micromixer was developed, leading to the establishment of an advanced microfluidic system for polymorph control. The groundbreaking mechanism was validated by scrutinizing the influence of microfluidic conditions on the polymorphic transformation, facilitating a continuous and efficient transition from alpha-CL-20 to epsilon-CL-20-PBX. Notably, thermal decomposition tests provided further endorsement, confirming the superior storage safety and reliability of epsilon-CL-20-PBX. The findings offer an unprecedented understanding of the polymorphic transformation of explosive materials and open new avenues in the manipulation of polycrystalline materials.
引用
收藏
页码:7755 / 7773
页数:19
相关论文
共 50 条
  • [41] Crystal Structure Prediction of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by a Tailor-Made OPLS-AA Force Field
    Wang, Chaoyu
    Ni, Yuxiang
    Zhang, Chaoyang
    Xue, Xianggui
    CRYSTAL GROWTH & DESIGN, 2021, 21 (05) : 3037 - 3046
  • [42] Theoretical and Experimental Study of the C-H Stretching Overtones of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12 hexaazaisowurtzitane (CL20)
    Cabalo, J.
    Sausa, R.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (37): : 9039 - 9046
  • [43] Density of crystals of polynitramines - 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurcitane, potential ligand
    Golovina, N.I.
    Raevskij, A.V.
    Chukanov, N.V.
    Korsunskij, B.L.
    Shilov, G.V.
    Atovmyan, L.O.
    Aldoshin, S.M.
    Rossijskij Khimicheskij Zhurnal (Zhurnal Rossijskogo Khimicheskogo Obshchestva Im. D.I. Mendeleeva), 2004, 48 (01): : 41 - 49
  • [44] Deactivation and Regeneration of Palladium Catalysts for Hydrogenation Debenzylation of 2,4,6,8,10,12-Hexabenzyl-2,4,6,8,10,12-Hexaazaisowurtzitane (HBIW)
    Zhang, Qunfeng
    Wang, Mei
    Qian, Jiacheng
    Lou, Shuyuan
    Jin, Jianhong
    Li, Bingcheng
    Lu, Chunshan
    Feng, Feng
    Lv, Jinghui
    Wang, Qingtao
    Li, Xiaonian
    CATALYSTS, 2022, 12 (12)
  • [45] Solubility Measurement and Correlation for ε-2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane in Different Alkanes/Aromatic Hydrocarbon plus Ethyl Acetate Binary Solvents at Temperatures of between 283.15 and 323.15 K
    Cui, Chao
    Ren, Hui
    Jiao, Qingjie
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2018, 63 (08): : 3097 - 3106
  • [46] Nitration of 2,6,8,12-Tetraacetyl-2,4,6,8,10,12-Hexaazaisowurtzitane Derivatives
    Chikina, Maya, V
    Kulagina, Daria A.
    Sysolyatin, Sergey, V
    MATERIALS, 2022, 15 (22)
  • [47] Solubility Measurement Study on a Metastable Polymorph of β-2,4,6,8,10,12-Hexanitro-2,4,6,8,10,1 2-hexaazaisowurtzitane by Raman Spectroscopy
    Park, In-Ho
    Yang, Hee-Og
    Kim, Jun-Hyung
    Kim, Kwang-Joo
    CRYSTAL GROWTH & DESIGN, 2019, 19 (09) : 4990 - 5004
  • [48] Difference in the Thermal Stability of Polymorphic Organic Crystals: A Comparative Study of the Early Events of the Thermal Decay of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) Polymorphs under the Volume Constraint Condition
    Liu, Guangrui
    Xiong, Ying
    Gou, Ruijun
    Zhang, Chaoyang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (27): : 16565 - 16576
  • [49] Nitration of Derivatives of 2,6,8,12-tetraacety1-2,4,6,8,10,12-hexaazaisowurtzitane
    Yudin, N. V.
    Zbarsky, V. L.
    Filimonova, E. V.
    THEORY AND PRACTICE OF ENERGETIC MATERIALS (VOL IX), PROCEEDINGS OF THE 2011 INTERNATIONAL AUTUMN SEMINAR ON PROPELLANTS, EXPLOSIVES AND PYROTECHNICS, 2011, : 8 - 12
  • [50] A Study on Nitration of 4,10-Dibenzyl-2,6,8,12-Tetraacetyl-2,4,6,8,10,12-Hexaazaisowurtzitane
    Surmachev, Vladimir N.
    Kubasova, Valentina A.
    Zimin, Dmitri E.
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2020, 45 (12) : 1841 - 1844