The concept of AI-assisted self-monitoring for skeletal malocclusion

被引:0
|
作者
Zhang, Hexian [1 ]
Liu, Chao [2 ]
Yang, Pingzhu [1 ]
Yang, Sen [1 ]
Yu, Qing [2 ]
Liu, Rui [1 ]
机构
[1] Third Mil Med Univ, Army Med Univ, Daping Hosp, Dept Stomatol, 10 Daping Yangtze Branch Rd, Chongqing 400042, Peoples R China
[2] Nanjing Univ, Nanjing Stomatol Hosp, Affiliated Hosp Med Sch, Inst Stomatol, 30 Zhongyang Rd, Nanjing 210008, Peoples R China
关键词
artificial intelligence; deep learning; malocclusion; primary health care; mass screening; DIAGNOSIS;
D O I
10.1177/14604582241274511
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Skeletal malocclusion is common among populations. Its severity often increases during adolescence, yet it is frequently overlooked. The introduction of deep learning in stomatology has opened a new avenue for self-health management. Methods: In this study, networks were trained using lateral photographs of 2109 newly diagnosed patients. The performance of the models was thoroughly evaluated using various metrics, such as sensitivity, specificity, accuracy, confusion matrix analysis, the receiver operating characteristic curve, and the area under the curve value. Heat maps were generated to further interpret the models' decisions. A comparative analysis was performed to assess the proposed models against the expert judgment of orthodontic specialists. Results: The modified models reached an impressive average accuracy of 84.50% (78.73%-88.87%), with both sex and developmental stage information contributing to the AI system's enhanced performance. The heat maps effectively highlighted the distinct characteristics of skeletal class II and III malocclusion in specific regions. In contrast, the specialist achieved a mean accuracy of 71.89% (65.25%-77.64%). Conclusions: Deep learning appears to be a promising tool for assisting in the screening of skeletal malocclusion. It provides valuable insights for expanding the use of AI in self-monitoring and early detection within a family environment.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] AI-ASSISTED DIGITALISATION OF HISTORICAL DOCUMENTS
    Ferro, S.
    Pelillo, M.
    Traviglia, A.
    29TH CIPA SYMPOSIUM DOCUMENTING, UNDERSTANDING, PRESERVING CULTURAL HERITAGE. HUMANITIES AND DIGITAL TECHNOLOGIES FOR SHAPING THE FUTURE, VOL. 48-M-2, 2023, : 557 - 562
  • [22] Benefits of AI-assisted obstetric surveillance
    Graupner, O.
    Enzensberger, C.
    GYNAKOLOGIE, 2022, 55 (10): : 740 - 745
  • [23] Accessibility in AI-Assisted Web Development
    Mowar, Peya
    21ST INTERNATIONAL WEB FOR ALL CONFERENCE, W4A2024, 2024, : 123 - 125
  • [24] AI-assisted prognostic scoring of tumours
    不详
    VETERINARY RECORD, 2024, 195 (12) : 486 - 486
  • [25] Writing the rules in AI-assisted writing
    Nature Machine Intelligence, 2023, 5 : 469 - 469
  • [26] AI-Assisted Intelligent Humanoid Robot
    Dilip Kumar Pratihar
    Transactions of the Indian National Academy of Engineering, 2024, 9 (2) : 313 - 321
  • [27] AI-assisted game debugging with Cicero
    Machado, Tiago
    Gopstein, Daniel
    Nealen, Andy
    Nov, Oded
    Togelius, Julian
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 9 - 16
  • [28] AI-Assisted Disease Monitoring Using Stretchable Polymer-Based Sensors
    Li, Tianliang
    Wang, Qian'ao
    Su, Yifei
    Qiao, Feng
    Pei, Qingfeng
    Li, Xiong
    Tan, Yuegang
    Zhou, Zude
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (25) : 30924 - 30934
  • [29] Informative Artifacts in AI-Assisted Care
    Azizi, Zahra
    Vedelli, Jordan K. H.
    Anand, Kanwaljeet J. S.
    NEW ENGLAND JOURNAL OF MEDICINE, 2023, 389 (22): : 2113 - 2113
  • [30] Writing the rules in AI-assisted writing
    不详
    NATURE MACHINE INTELLIGENCE, 2023, 5 (05) : 469 - 469