A deep learning-based global tropical cyclogenesis prediction model and its interpretability analysis

被引:0
|
作者
Mu, Bin [1 ]
Wang, Xin [1 ]
Yuan, Shijin [1 ]
Chen, Yuxuan [1 ]
Wang, Guansong [1 ]
Qin, Bo [2 ,3 ]
Zhou, Guanbo [4 ,5 ]
机构
[1] Tongji Univ, Sch Software Engn, Shanghai 201804, Peoples R China
[2] Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
[3] Fudan Univ, Inst Atmospher Sci, Shanghai 200438, Peoples R China
[4] Natl Meteorol Ctr, Beijing 100081, Peoples R China
[5] China Meteorol Adm, Shanghai Typhoon Inst, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金;
关键词
Tropical cyclogenesis prediction; Deep learning; Feature fusion; Interpretability; Causal inference; SEA-SURFACE TEMPERATURE; NONDEVELOPING DISTURBANCES; CYCLONES; GENESIS; INTENSITY; WAVE;
D O I
10.1007/s11430-023-1383-6
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Tropical cloud clusters (TCCs) can potentially develop into tropical cyclones (TCs), leading to significant casualties and economic losses. Accurate prediction of tropical cyclogenesis (TCG) is crucial for early warnings. Most traditional deep learning methods applied to TCG prediction rely on predictors from a single time point, neglect the ocean-atmosphere interactions, and exhibit low model interpretability. This study proposes the Tropical Cyclogenesis Prediction-Net (TCGP-Net) based on the Swin Transformer, which leverages convolutional operations and attention mechanisms to encode spatiotemporal features and capture the temporal evolution of predictors. This model incorporates the coupled ocean-atmosphere interactions, including multiple variables such as sea surface temperature. Additionally, causal inference and integrated gradients are employed to validate the effectiveness of the predictors and provide an interpretability analysis of the model's decision-making process. The model is trained using GridSat satellite data and ERA5 reanalysis datasets. Experimental results demonstrate that TCGP-Net achieves high accuracy and stability, with a detection rate of 97.9% and a false alarm rate of 2.2% for predicting TCG 24 hours in advance, significantly outperforming existing models. This indicates that TCGP-Net is a reliable tool for tropical cyclogenesis prediction.
引用
收藏
页码:3671 / 3695
页数:25
相关论文
共 50 条
  • [31] Deep learning-based dose prediction for INTRABEAM
    Abushawish, Mojahed
    Galapon, Arthur V.
    Herraiz, Joaquin L.
    Udias, Jose M.
    Ibanez, Paula
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4472 - S4474
  • [32] Deep learning-based prediction of TFBSs in plants
    Shen, Wei
    Pan, Jian
    Wang, Guanjie
    Li, Xiaozheng
    TRENDS IN PLANT SCIENCE, 2021, 26 (12) : 1301 - 1302
  • [33] Deep learning-based location prediction in VANET
    Rezazadeh, Nafiseh
    Amirabadi, Mohammad Ali
    Kahaei, Mohammad Hossein
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (09) : 1574 - 1587
  • [34] Deep learning-based prediction of proteincarbohydrate interfaces
    Gheeraert, A.
    Lin, R. Leon Foun
    Bailly, T.
    Ren, Y.
    Vander Meersche, Y.
    Cretin, G.
    Gelly, J.
    Galochkina, T.
    FEBS OPEN BIO, 2024, 14 : 94 - 94
  • [35] Deep Learning-Based Wave Overtopping Prediction
    Alvarellos, Alberto
    Figuero, Andres
    Rodriguez-Yanez, Santiago
    Sande, Jose
    Pena, Enrique
    Rosa-Santos, Paulo
    Rabunal, Juan
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [36] A Survey of Deep Learning-Based Lightning Prediction
    Wang, Xupeng
    Hu, Keyong
    Wu, Yongling
    Zhou, Wei
    ATMOSPHERE, 2023, 14 (11)
  • [37] Deep learning-based prediction of autoimmune diseases
    Yang, Donghong
    Peng, Xin
    Zheng, Senlin
    Peng, Shenglan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [38] Deep Learning-Based Weather Prediction: A Survey
    Ren, Xiaoli
    Li, Xiaoyong
    Ren, Kaijun
    Song, Junqiang
    Xu, Zichen
    Deng, Kefeng
    Wang, Xiang
    BIG DATA RESEARCH, 2021, 23
  • [39] Deep Learning-Based Rainfall Prediction Using Cloud Image Analysis
    Byun, Jongyun
    Jun, Changhyun
    Kim, Jinwon
    Cha, Jaehoon
    Narimani, Roya
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [40] Longitudinal interpretability of deep learning based breast cancer risk prediction
    Klanecek, Zan
    Wang, Yao-Kuan
    Wagner, Tobias
    Cockmartin, Lesley
    Marshall, Nicholas
    Schott, Brayden
    Deatsch, Ali
    Studen, Andrej
    Jarm, Katja
    Krajc, Mateja
    Vrhovec, Milos
    Bosmans, Hilde
    Jeraj, Robert
    PHYSICS IN MEDICINE AND BIOLOGY, 2025, 70 (01):