Synthesis and Evaluation of Corrosion Inhibitor Based on Copolymeric Modified Chitosan Core-Shell Nanocomposite

被引:0
|
作者
Elewa, B. S. [1 ]
Fouad, E. A. [1 ,2 ]
Eldougdoug, W. I. [2 ]
El-Desouky, M. M. [1 ]
机构
[1] Banha Univ, Banha Fac Engn, Dept Basic Engn Sci, Banha, Egypt
[2] Banha Univ, Fac Sci, Chem Dept, Banha, Egypt
来源
EGYPTIAN JOURNAL OF CHEMISTRY | 2024年 / 67卷 / 06期
关键词
o-Aminophenol; Anthranilic acid; Copolymerization; Chitosan; Steel; Potentiodynamic polarization; Chemisorption; MILD-STEEL; ANTHRANILIC ACID;
D O I
10.21608/EJCHEM.2023.238870.8668
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new aqueous dispersible nanocomposite as a green semi-synthetic polymer corrosion inhibitor was developed by a free radical copolymerization of o-aminophenol with anthranilic acid in presence of chitosan (CH/poly-OAP-co-AA). The developed inhibitor performance was tested by surface scanning and electrochemical analysis in aqueous HCl (0.1 M). Using (SEM) scanning electron microscope, (TEM) transmission electron microscope and (FTIR) Fourier transform infrared, the chemical composition and surface properties of CH/poly-OAPco-AA and morphology of treated steel were explored. The outcomes of performance experiments display very impressive results as corrosion inhibitor, the effectiveness of the inhibition grew as the quantity of the newly synthesised inhibitor rose. Langmuir isotherm was detected to be the most suitable to represent chemisorption of CH/poly-OAP-co-AA on steel surface.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 50 条
  • [31] Synthesis and evaluation of NiO@MCM-41 core-shell nanocomposite in the CO2 reforming of methane
    Roosta, Z.
    Izadbakhsh, A.
    Sanati, A. M.
    Osfouri, S.
    JOURNAL OF POROUS MATERIALS, 2018, 25 (04) : 1135 - 1145
  • [32] Manual and automated synthesis of modified oligonucleotides on core-shell solid supports
    Menendez-Mendez, Luis M.
    Fabrega, Carme
    Avino, Anna
    Eritja, Ramon
    Lee, Yoon-Sik
    Sanghvi, Yogesh S.
    Fernandez, Susana
    Ferrero, Miguel
    RESULTS IN CHEMISTRY, 2024, 12
  • [33] Thermoresponsive CdS@PNIPAM core-shell nanocomposite
    Cao, Y. X.
    Wang, M.
    Wang, J. T.
    Li, C. H.
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (19) : 6461 - 6464
  • [34] Preparation and Application of Core-shell PMMA/Chitosan Nanoparticle
    Sha, Biying
    Liu, Qingshan
    Cheng, Lin
    Yin, Xiaoying
    ADVANCED ENGINEERING MATERIALS II, PTS 1-3, 2012, 535-537 : 271 - +
  • [35] A three-layered multifunctional photoactive core-shell gadolinium based nanocomposite
    Khakzadian, J.
    Hosseini, H. R. Madaah
    Bagherzadeh, E.
    CERAMICS INTERNATIONAL, 2019, 45 (17) : 21228 - 21234
  • [36] Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite
    Shukla, S. K.
    Deshpande, Swapneel R.
    Shukla, Sudheesh K.
    Tiwari, Ashutosh
    TALANTA, 2012, 99 : 283 - 287
  • [37] A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy
    Eivazzadeh-Keihan, Reza
    Radinekiyan, Fateme
    Maleki, Ali
    Bani, Milad Salimi
    Hajizadeh, Zoleikha
    Asgharnasl, Somayeh
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 140 : 407 - 414
  • [38] Chitosan/β-lactoglobulin core-shell nanoparticles as nutraceutical carriers
    Chen, LY
    Subirade, M
    BIOMATERIALS, 2005, 26 (30) : 6041 - 6053
  • [39] Chitosan-Based Hydrothermal Nanocarbon: Core-Shell Characteristics and Composite Electrodes
    Xia, Fengjie
    Pan, Mu
    Mu, Shichun
    Jones, Matthew D.
    Wolverson, Daniel
    Marken, Frank
    ELECTROANALYSIS, 2012, 24 (08) : 1703 - 1708
  • [40] Alpha- glucosidase Immobilization based on PMMA/Chitosan Core-shell Microparticles
    Sha, Biying
    Liu, Qingshan
    Zhang, Jinlian
    Yin, Xiaoying
    ADVANCES IN MATERIALS AND MATERIALS PROCESSING IV, PTS 1 AND 2, 2014, 887-888 : 507 - +