Data-dependent and Scale-Invariant Kernel for Support Vector Machine Classification

被引:0
|
作者
Malgi, Vinayaka Vivekananda [1 ]
Arya, Sunil [1 ]
Rasool, Zafaryab [1 ]
Tay, David [1 ]
机构
[1] Deakin Univ, Waurn Ponds, Vic 3216, Australia
关键词
SVM classification; Kernel functions; Data-dependent kernel; Scale-invariant kernel; Information-theoretic similarity; SIMILARITY;
D O I
10.1007/978-3-031-33374-3_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel similarity function allows a Support Vector Machine (SVM) classifier to learn the maximum margin hyperplane in a higher dimensional space where two classes are linearly separable without explicitly mapping the data. Most existing kernel functions (e.g., RBF) use spatial positions of two data instances in the input space to compute their similarity. These kernels are data distribution independent and sensitive to data representation (i.e., units/scales used to measure/express data). Since this can be unknown in many real-world applications, a careful selection of a suitable kernel is required for a given problem. In this paper, we present a new kernel function based on probability data mass that is both data-dependent and scale-invariant. Our empirical results show that the proposed SVM kernel outperforms popular existing kernels.
引用
收藏
页码:171 / 182
页数:12
相关论文
共 50 条
  • [21] Automated classification of protein crystallization images using support vector machines with scale-invariant texture and Gabor features
    Pan, S
    Shavit, G
    Penas-Centeno, M
    Xu, DH
    Shapiro, L
    Ladner, R
    Riskin, E
    Hol, W
    Meldrum, D
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2006, 62 : 271 - 279
  • [22] Imbalanced data classification based on scaling kernel-based support vector machine
    Yong Zhang
    Panpan Fu
    Wenzhe Liu
    Guolong Chen
    Neural Computing and Applications, 2014, 25 : 927 - 935
  • [23] LiDAR Data Classification Using Extinction Profiles and a Composite Kernel Support Vector Machine
    Ghamisi, Pedram
    Hoefle, Bernhard
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 659 - 663
  • [24] Imbalanced data classification based on scaling kernel-based support vector machine
    Zhang, Yong
    Fu, Panpan
    Liu, Wenzhe
    Chen, Guolong
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (3-4): : 927 - 935
  • [25] APPLYING OPTIMAL ALGORITHM TO DATA-DEPENDENT KERNEL FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Chen, I-Ling
    Li, Cheng-Hsuan
    Kuo, Bor-Chen
    Huang, Hsiao-Yun
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2808 - 2811
  • [26] NEURAL-NETWORK AND WAVELET TRANSFORM FOR SCALE-INVARIANT DATA CLASSIFICATION
    SZU, HH
    YANG, XY
    TELFER, BA
    SHENG, YL
    PHYSICAL REVIEW E, 1993, 48 (02): : 1497 - 1501
  • [27] Scale-Invariant Heat Kernel Mapping for Shape Analysis
    Wang, Kang
    Wu, Zhongke
    Ali, Sajid
    Zhao, Junli
    Jia, Taorui
    Shui, Wuyang
    Zhou, Mingquan
    TRANSACTIONS ON COMPUTATIONAL SCIENCE XXVI: SPECIAL ISSUE ON CYBERWORLDS AND CYBERSECURITY, 2016, 9550 : 74 - 90
  • [28] Large-scale support vector machine classification with redundant data reduction
    Shen, Xiang-Jun
    Mu, Lei
    Li, Zhen
    Wu, Hao-Xiang
    Gou, Jian-Ping
    Chen, Xin
    NEUROCOMPUTING, 2016, 172 : 189 - 197
  • [29] AADT prediction using support vector regression with data-dependent parameters
    Castro-Neto, Manoel
    Jeong, Youngseon
    Jeong, Myong K.
    Han, Lee D.
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 2979 - 2986
  • [30] Investigation of scale-invariant image classification mechanisms
    Moiseenko, G. A.
    Pronin, S., V
    Shelepin, Yu E.
    JOURNAL OF OPTICAL TECHNOLOGY, 2019, 86 (11) : 729 - 733