Sewage sludge (SS) holds promise for environmental, agricultural, and energy applications. However, its direct use is limited due to contaminant concerns. Pyrolysis can turn SS into beneficial products like bio-oil and biochar. This study explores biochar production from SS pyrolysis and its potential for pollutant adsorption. The effects of pyrolysis temperature (500, 650, 850 degrees C) and SS particle size (800-1000 mu m, 400-800 mu m, 100-400 mu m, <= 100 mu m) on biochar yield and adsorption capacity for methylene blue and mercury were investigated. Regardless of particle size and temperature, SS-derived biochar exhibited second-order adsorption kinetics. Biochar with a particle size of 100-400 mu m displayed the highest potential for methylene blue adsorption. Subsequent alkali treatment (biochar:NaOH = 3:4) of these particles significantly increased specific surface area from 27.5 m2/g to 144.27 m2/g and further enhanced adsorption capacities for both methylene blue (from 9 mg/g to 35 mg/g) and mercury (from 17 mg/g to 36 mg/g). These findings suggest that SS-derived biochar, particularly the 100-400 mu m fraction with alkali treatment, presents a promising cost-effective adsorbent for water treatment, aligning with circular economy principles.