Cloud-Edge Selective Background Energy Constrained Filter for Real-Time Hyperspectral Target Detection

被引:3
|
作者
Wang, Yunchang [1 ]
Sun, Jin [1 ]
Wei, Zhihui [1 ]
Plaza, Javier [2 ]
Plaza, Antonio [2 ]
Wu, Zebin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Univ Extremadura, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
基金
中国国家自然科学基金;
关键词
Cloud-edge collaboration; hyperspectral; real time (RT) detection; target detection; COLLABORATIVE CLOUD; CLASSIFICATION; INTERNET; THINGS;
D O I
10.1109/TGRS.2024.3425428
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Constrained by the performance of edge devices and real time (RT) processing technology, the existing hyperspectral target detection algorithms often struggle to rapidly distinguish targets from complex background pixels during real-time detection. To address this issue, this article proposes a new real-time cloud-edge selective background energy constrained (CE-SBEC) hyperspectral target detection algorithm. This algorithm aims to obtain detection results in real-time after capturing new data. Moreover, it conducts in-depth analysis based on existing detection results and updates the algorithm's internal data to enhance its capabilities in terms of global background annihilation (GBA) and complex background suppression (CBS). Consequently, it improves the accuracy of subsequent real-time detection results. To enhance the resource utilization, this article deploys various task nodes of the algorithm separately on both the cloud and the edge, enabling collaborative execution of the CE-SBEC algorithm. In our context, edge devices are airborne equipment designed for the rapid acquisition and processing of data at the site of data collection, while cloud computing devices refer to high-performance computing clusters situated at a significant distance from the data collection site. Experimental results demonstrate that compared with existing detection algorithms, our newly proposed method achieves more accurate detection results while ensuring real-time performance.
引用
收藏
页码:1 / 1
页数:15
相关论文
共 50 条
  • [31] Real-time hyperspectral detection and cuing
    Stellman, CM
    Hazel, GG
    Bucholtz, F
    Michalowicz, JV
    Stocker, A
    Schaaf, W
    OPTICAL ENGINEERING, 2000, 39 (07) : 1928 - 1935
  • [32] Optimal real-time flexibility scheduling for community integrated energy system considering consumer psychology: A cloud-edge collaboration based framework
    Zhang, Wei
    Wu, Jie
    ENERGY, 2025, 320
  • [33] A Real-Time UAV Target Detection Algorithm Based on Edge Computing
    Cheng, Qianqing
    Wang, Hongjun
    Zhu, Bin
    Shi, Yingchun
    Xie, Bo
    DRONES, 2023, 7 (02)
  • [34] Hyperspectral real-time anomaly target detection based on progressive line processing
    Zhao C.
    Deng W.
    Yao X.
    1600, Chinese Optical Society (37):
  • [35] Hyperspectral Imaging for Real-Time Unmanned Aerial Vehicle Maritime Target Detection
    Freitas, Sara
    Silva, Hugo
    Almeida, Jose
    Silva, Eduardo
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2018, 90 (3-4) : 551 - 570
  • [36] Real-time target detection architecture based on reduced complexity hyperspectral processing
    Park, Kyoung-Su
    Cho, Shung Han
    Hong, Sangjin
    Cho, We-Duke
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
  • [37] Hyperspectral Imaging for Real-Time Unmanned Aerial Vehicle Maritime Target Detection
    Sara Freitas
    Hugo Silva
    José Almeida
    Eduardo Silva
    Journal of Intelligent & Robotic Systems, 2018, 90 : 551 - 570
  • [38] FPGA implementation of collaborative representation algorithm for real-time hyperspectral target detection
    Jingjing Wu
    Yu Jin
    Wei Li
    Lianru Gao
    Bing Zhang
    Journal of Real-Time Image Processing, 2018, 15 : 673 - 685
  • [39] A Dual Mode FPGA Implementation of Real-time Target Detection for Hyperspectral Imagery
    Yang, Bin
    Yang, Minhua
    Gao, Lianru
    Zhang, Bing
    2014 THIRD INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA 2014), 2014,
  • [40] FPGA implementation of collaborative representation algorithm for real-time hyperspectral target detection
    Wu, Jingjing
    Jin, Yu
    Li, Wei
    Gao, Lianru
    Zhang, Bing
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2018, 15 (03) : 673 - 685