Finding core labels for maximizing generalization of graph neural networks

被引:1
|
作者
Fu, Sichao [1 ]
Ma, Xueqi [2 ]
Zhan, Yibing [3 ]
You, Fanyu [4 ]
Peng, Qinmu [1 ]
Liu, Tongliang [5 ]
Bailey, James
Mandic, Danilo [2 ,6 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
[2] Univ Melbourne, Sch Comp & Informat Syst, Parkville, Vic 3010, Australia
[3] JD Explore Acad, Beijing 100176, Peoples R China
[4] Univ Southern Calif, Los Angeles, CA 90005 USA
[5] Univ Sydney, Fac Engn, Sch Comp Sci, Trustworthy Machine Learning Lab, Camperdown, NSW 2006, Australia
[6] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2BX, England
基金
中国国家自然科学基金;
关键词
Graph neural networks; Semi-supervised learning; Node classification; Data-centric;
D O I
10.1016/j.neunet.2024.106635
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph neural networks (GNNs) have become a popular approach for semi-supervised graph representation learning. GNNs research has generally focused on improving methodological details, whereas less attention has been paid to exploring the importance of labeling the data. However, for semi-supervised learning, the quality of training data is vital. In this paper, we first introduce and elaborate on the problem of training data selection for GNNs. More specifically, focusing on node classification, we aim to select representative nodes from a graph used to train GNNs to achieve the best performance. To solve this problem, we are inspired by the popular lottery ticket hypothesis, typically used for sparse architectures, and we propose the following subset hypothesis for graph data: "There exists a core subset when selecting a fixed-size dataset from the dense training dataset, that can represent the properties of the dataset, and GNNs trained on this core subset can achieve a better graph representation". Equipped with this subset hypothesis, we present an efficient algorithm to identify the core data in the graph for GNNs. Extensive experiments demonstrate that the selected data (as a training set) can obtain performance improvements across various datasets and GNNs architectures.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Learning Invariant Representations of Graph Neural Networks via Cluster Generalization
    Xia, Donglin
    Wang, Xiao
    Liu, Nian
    Shi, Chuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [22] Robust Training of Deep Neural Networks with Noisy Labels by Graph Label Propagation
    Nomura, Yuichiro
    Kurita, Takio
    FRONTIERS OF COMPUTER VISION, IW-FCV 2021, 2021, 1405 : 281 - 293
  • [23] Form-finding of tensegrity structures based on graph neural networks
    Shao, Shoufei
    Guo, Maozu
    Zhang, Ailin
    Zhang, Yanxia
    Li, Yang
    Li, Zhuoxuan
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (15) : 2664 - 2690
  • [24] Graph Neural Networks with Motisf-aware for Tenuous Subgraph Finding
    Sun, Heli
    Sun, Miaomiao
    Liu, Xuechun
    Zhu, Linlin
    He, Liang
    Jia, Xiaolin
    Chen, Yuan
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (08)
  • [25] Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
    Li, Xiang
    Zhu, Renyu
    Cheng, Yao
    Shan, Caihua
    Luo, Siqiang
    Li, Dongsheng
    Qian, Weining
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [26] GENERALIZATION BY NEURAL NETWORKS
    SHEKHAR, S
    AMIN, MB
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1992, 4 (02) : 177 - 185
  • [27] On generalization by neural networks
    Kak, SC
    INFORMATION SCIENCES, 1998, 111 (1-4) : 293 - 302
  • [28] Wasserstein Barycenter Matching for Graph Size Generalization of Message Passing Neural Networks
    Chu, Xu
    Jin, Yujie
    Wang, Xin
    Zhang, Shanghang
    Wang, Yasha
    Zhu, Wenwu
    Mei, Hong
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [29] Using Graph Neural Networks to Improve Generalization Capability of the Models for Deepfake Detection
    She, Huimin
    Hu, Yongjian
    Liu, Beibei
    Li, Jicheng
    Li, Chang-Tsun
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 8414 - 8427
  • [30] Multimodal Emotion Recognition Method Based on Domain Generalization and Graph Neural Networks
    Xie, Jinbao
    Wang, Yulong
    Meng, Tianxin
    Tai, Jianqiao
    Zheng, Yueqian
    Varatnitski, Yury I.
    ELECTRONICS, 2025, 14 (05):