Chlorogenic acid attenuates idiopathic pulmonary fibrosis: An integrated analysis of network pharmacology, molecular docking, and experimental validation

被引:2
|
作者
Velazquez-Enriquez, Juan Manuel [1 ]
Santos-Alvarez, Jovito Cesar [1 ]
Ramirez-Hernandez, Alma Aurora [1 ]
Reyes-Jimenez, Edilburga [1 ]
Mayoral, Laura Perez-Campos [2 ]
Romero-Tlalolini, Maria de los Angeles [3 ]
Jimenez-Martinez, Cristian [4 ]
Arellanes-Robledo, Jaime [5 ,6 ]
Villa-Trevino, Saul [7 ]
Vasquez-Garzon, Veronica Rocio [1 ,3 ]
Baltierrez-Hoyos, Rafael [1 ,3 ]
机构
[1] Univ Autonoma Benito Juarez Oaxaca, Fac Med & Cirugia, Lab Fibrosis & Canc, Ex Hacienda Aguilera S N, San Felipe Del Agua 68020, Oaxaca, Mexico
[2] Univ Autonoma Benito Juarez Oaxaca, Fac Med & Cirugia, Ex Hacienda Aguilera S-N, San Felipe Del Agua 68020, Oaxaca, Mexico
[3] Univ Autonoma Benito Juarez Oaxaca, Fac Med & Cirugia, CONAHCYT, Ex Hacienda Aguilera S-N, San Felipe Del Agua 68020, Oaxaca, Mexico
[4] Escuela Nacl Ciencias Biol, Dept Ingn Bioquim, Unidad Profes Adolfo Lopez Mateos, Inst Politecn Nacl, Ave Wilfrido Massieu Esq Cda Miguel Stampa S-N, Al, Mexico City 07738, Mexico
[5] Inst Nacl Med Genomica INMEGEN, Lab Enfermedades Hepat, Mexico City 14610, Mexico
[6] Consejo Nacl Human Ciencias & Tecnol CONAHCYT, Direcc Adjunta Invest Humanist & Cient, Mexico City 03940, Mexico
[7] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Biol Celular, Ciudad De Mexico 07360, Mexico
关键词
Chlorogenic acid; Idiopathic pulmonary fibrosis; Pulmonary disease; Drug discovery; Antifibrotic; Network pharmacology; MATRIX METALLOPROTEINASES; BCL-2; PROTEIN; LUNG-CANCER; WEB SERVER; EXPRESSION; TISSUE; AKT1; IDENTIFICATION; INHIBITION; ACTIVATION;
D O I
10.1016/j.bbrc.2024.150672
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aims: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung condition, the cause of which remains unknown and for which no effective therapeutic treatment is currently available. Chlorogenic acid (CGA), a natural polyphenolic compound found in different plants and foods, has emerged as a promising agent due to its anti-inflammatory, antioxidant, and antifibrotic properties. However, the molecular mechanisms underlying the therapeutic effect of CGA in IPF remain unclear. The purpose of this study was to analyze the pharmacological impact and underlying mechanisms of CGA in IPF. Main methods: Using network pharmacology analysis, genes associated with IPF and potential molecular targets of CGA were identified through specialized databases, and a protein-protein interaction (PPI) network was constructed. Molecular docking was performed to accurately select potential therapeutic targets. To investigate the effects of CGA on lung histology and key gene expression, a murine model of bleomycin-induced lung fibrosis was used. Key findings: Network pharmacology analysis identified 384 were overlapped between CGA and IPF. Key targets including AKT1, TP53, JUN, CASP3, BCL2, MMP9, NFKB1, EGFR, HIF1A, and IL1B were identified. Pathway analysis suggested the involvement of cancer, atherosclerosis, and inflammatory processes. Molecular docking confirmed the stable binding between CGA and targets. CGA regulated the expression mRNA of EGFR, MMP9, AKT1, BCL2 and IL1B and attenuated pulmonary fibrosis in the mouse model. Significance: CGA is a promising multi-target therapeutic agent for IPF, which is supported by its efficacy in reducing fibrosis through the modulation of key pathways. This evidence provides a basis to further investigate CGA as an IPF potential treatment.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Investigation of the mechanism of baicalein in the treatment of periodontitis based on network pharmacology, molecular docking and experimental validation
    Liu, Yue
    Cao, Fengdi
    Shi, Mingyue
    Deng, Zhuohang
    Guo, Kaili
    Fan, Tiantian
    Meng, Yuhan
    Bu, Mingyang
    Ma, Zhe
    BMC ORAL HEALTH, 2024, 24 (01):
  • [32] Mechanism of Lycium barbarum in treating periodontitis based on network pharmacology, molecular docking, and experimental validation
    Ma, Lin-Sha
    Jia, Xue-Ting
    Hu, Fa-Quan
    Zheng, Yu-Jiao
    Huang, Xiao-Feng
    Rausch-Fan, Xiaohui
    Fan, Xiao-Chuan
    CLINICAL ORAL INVESTIGATIONS, 2025, 29 (04)
  • [33] Mechanism of Curcumin in the Treatment of Intrauterine Adhesions Based on Network Pharmacology, Molecular docking, and Experimental Validation
    Li, Qiaoxia
    Zhang, Yongyan
    Shen, Haoyu
    Wang, Ziqian
    Huang, Jiezhuang
    Tang, Shuli
    Chen, Peiyue
    Zhi, Zhifu
    BIOCHEMICAL GENETICS, 2025,
  • [34] Integrating network pharmacology, molecular docking, and experimental validation to reveal the mechanism of Radix Rehmanniae in psoriasis
    Mo, Nian
    Zhou, Panyu
    Liu, Fanlu
    Su, Haojie
    Han, Ling
    Lu, Chuanjian
    MEDICINE, 2024, 103 (43)
  • [35] Orientin Reduces the Effects of Repeated Procedural Neonatal Pain in Adulthood: Network Pharmacology Analysis, Molecular Docking Analysis, and Experimental Validation
    Guo, Dong-Dong
    Huang, Hai-Yan
    Liu, Hai-E.
    Liu, Kun
    Luo, Xing-Jing
    PAIN RESEARCH & MANAGEMENT, 2023, 2023
  • [36] Stearic acid attenuates profibrotic signalling in idiopathic pulmonary fibrosis
    Kim, Hak-Su
    Yoo, Hyun Ju
    Lee, Kwang Min
    Song, Ha Eun
    Kim, Su Jung
    Lee, Jae Ok
    Hwang, Jung Jin
    Song, Jin Woo
    RESPIROLOGY, 2021, 26 (03) : 255 - 263
  • [37] Mechanism of Polygonum capitatum intervention in pulmonary fibrosis based on network pharmacology and molecular docking technology: A review
    Fan, Zhiliang
    Pu, Xiang
    Li, Lailai
    Li, Qian
    Jiang, Te
    Lu, Liping
    Tang, Jingwen
    Pan, Mei
    Zhang, Liyan
    Chai, Yihui
    MEDICINE, 2023, 102 (37) : E34912
  • [38] Network Pharmacology, Molecular Docking Analysis and Molecular Dynamics Simulation of Scutellaria baicalensis in the Treatment of Liver Fibrosis
    Wang, Junrui
    Wu, Zhuoqing
    Chen, Xiaolei
    Sun, Ying
    Ma, Shuyao
    Weng, Jingdan
    Zhang, Yuxin
    Dong, Keke
    Shao, Jiangjuan
    Zheng, Shizhong
    CURRENT PHARMACEUTICAL DESIGN, 2024, 30 (17) : 1326 - 1340
  • [39] Molecular mechanism of quercetin in treating RA-ILD based on network pharmacology, molecular docking, and experimental validation
    Jing Wang
    Zhichao Wang
    Yang Zhao
    Le Bai
    Yun Wei
    Tongxing Huang
    Yong Xu
    Xianmei Zhou
    Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, 397 : 3077 - 3092
  • [40] Molecular mechanism of quercetin in treating RA-ILD based on network pharmacology, molecular docking, and experimental validation
    Wang, Jing
    Wang, Zhichao
    Zhao, Yang
    Bai, Le
    Wei, Yun
    Huang, Tongxing
    Xu, Yong
    Zhou, Xianmei
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 (05) : 3077 - 3092