Drug-target affinity prediction;
Generative active learning;
Data augmentation;
STRUCTURAL BASIS;
D O I:
10.1016/j.ins.2024.121135
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Drug-target affinity (DTA) prediction is a critical early-stage task in drug discovery. Recently, deep learning has demonstrated remarkable efficacy in DTA prediction. However, acquiring experimentally verified data for target proteins proves to be a time-consuming, labor-intensive, and costly endeavor. In this study, we introduce an innovative generative active learning method for DTA prediction, referred to as GAL-DTA. GAL-DTA comprises two modules, data augmentation and generator fine-tuning. In the data augmentation module, the algorithm uses an optimized generator to produce informative and diverse molecules, thereby enhancing training of the predictor. The generator fine-tuning module introduces Fisher's informativeness and molecule diversity as objectives and employs the Pareto ranking algorithm to compute rewards. The final generator is fine-tuned using the policy-gradient method. GAL-DTA performs data augmentation by directly generating diverse and informative data, effectively reducing annotation costs while preserving model performance. Extensive experiments on independent test sets involving four target proteins consistently demonstrated that GAL-DTA achieves superior performance, resulting in an average reduction of 8 .402% in mean squared error.
机构:
Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R ChinaChongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
Zhu, Zhiqin
Zheng, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R ChinaChongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
Zheng, Xin
Qi, Guanqiu
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Buffalo, Comp Informat Syst Dept, Buffalo, NY 14222 USAChongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
Qi, Guanqiu
Gong, Yifei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toronto, Fac Appl Sci & Engn, Edward S Rogers Sr Dept Elect & Comp Engn ECE, Toronto, ON, CanadaChongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
Gong, Yifei
Li, Yuanyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R ChinaChongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
Li, Yuanyuan
Mazur, Neal
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Buffalo, Comp Informat Syst Dept, Buffalo, NY 14222 USAChongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
Mazur, Neal
Cong, Baisen
论文数: 0引用数: 0
h-index: 0
机构:
Danaher Co, DH Shanghai Diagnost Co Ltd, Diagnost Digital, Shanghai 200335, Peoples R ChinaChongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
Cong, Baisen
Gao, Xinbo
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R ChinaChongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China