Effective drug-target affinity prediction via generative active learning

被引:5
|
作者
Liu, Yuansheng [1 ,2 ]
Zhou, Zhenran [1 ]
Cao, Xiaofeng [3 ]
Cao, Dongsheng [4 ]
Zeng, Xiangxiang [1 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, 2 Lushan Rd, Changsha 410086, Hunan, Peoples R China
[2] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Anhui, Peoples R China
[3] Jilin Univ, Sch Artificial Intelligence, 2699 Qianjin St, Changchun 130012, Jilin, Peoples R China
[4] Cent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410013, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Drug-target affinity prediction; Generative active learning; Data augmentation; STRUCTURAL BASIS;
D O I
10.1016/j.ins.2024.121135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Drug-target affinity (DTA) prediction is a critical early-stage task in drug discovery. Recently, deep learning has demonstrated remarkable efficacy in DTA prediction. However, acquiring experimentally verified data for target proteins proves to be a time-consuming, labor-intensive, and costly endeavor. In this study, we introduce an innovative generative active learning method for DTA prediction, referred to as GAL-DTA. GAL-DTA comprises two modules, data augmentation and generator fine-tuning. In the data augmentation module, the algorithm uses an optimized generator to produce informative and diverse molecules, thereby enhancing training of the predictor. The generator fine-tuning module introduces Fisher's informativeness and molecule diversity as objectives and employs the Pareto ranking algorithm to compute rewards. The final generator is fine-tuned using the policy-gradient method. GAL-DTA performs data augmentation by directly generating diverse and informative data, effectively reducing annotation costs while preserving model performance. Extensive experiments on independent test sets involving four target proteins consistently demonstrated that GAL-DTA achieves superior performance, resulting in an average reduction of 8 .402% in mean squared error.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Prediction of drug-target binding affinity based on deep learning models
    Zhang H.
    Liu X.
    Cheng W.
    Wang T.
    Chen Y.
    Computers in Biology and Medicine, 2024, 174
  • [2] Multimodal contrastive representation learning for drug-target binding affinity prediction
    Zhang, Linlin
    Ouyang, Chunping
    Liu, Yongbin
    Liao, Yiming
    Gao, Zheng
    METHODS, 2023, 220 : 126 - 133
  • [3] Hierarchical graph representation learning for the prediction of drug-target binding affinity
    Chu, Zhaoyang
    Huang, Feng
    Fu, Haitao
    Quan, Yuan
    Zhou, Xionghui
    Liu, Shichao
    Zhang, Wen
    INFORMATION SCIENCES, 2022, 613 : 507 - 523
  • [4] Multidta: drug-target binding affinity prediction via representation learning and graph convolutional neural networks
    Deng, Jiejin
    Zhang, Yijia
    Pan, Yaohua
    Li, Xiaobo
    Lu, Mingyu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (07) : 2709 - 2718
  • [5] Improving drug-target affinity prediction via feature fusion and knowledge distillation
    Lu, Ruiqiang
    Wang, Jun
    Li, Pengyong
    Li, Yuquan
    Tan, Shuoyan
    Pan, Yiting
    Liu, Huanxiang
    Gao, Peng
    Xie, Guotong
    Yao, Xiaojun
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [6] Drug-target affinity prediction with extended graph learning-convolutional networks
    Qi, Haiou
    Yu, Ting
    Yu, Wenwen
    Liu, Chenxi
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [7] DeepDTA: deep drug-target binding affinity prediction
    Ozturk, Hakime
    Ozgur, Arzucan
    Ozkirimli, Elif
    BIOINFORMATICS, 2018, 34 (17) : 821 - 829
  • [8] Drug-target Interaction Prediction via Multiple Output Deep Learning
    Ye, Qing
    Zhang, Xiaolong
    Lin, Xiaoli
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 507 - 510
  • [9] A survey of drug-target interaction and affinity prediction methods via graph neural networks
    Zhang, Yue
    Hu, Yuqing
    Han, Na
    Yang, Aqing
    Liu, Xiaoyong
    Cai, Hongmin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
  • [10] Prediction of Drug-target Binding Affinity by An Ensemble Learning System with Network Fusion Information
    Zhang, Cheng Lin
    Zhang, You Zhi
    Wang, Bing
    Chen, Peng
    CURRENT BIOINFORMATICS, 2021, 16 (10) : 1223 - 1235