First-principles study of the hydrogen storage properties of hydride perovskites XCuH3 (X = K, Rb) for hydrogen storage applications

被引:23
|
作者
Du, Yifei [1 ]
Xu, Nanlin [1 ]
Chen, Shanjun [1 ]
Chen, Yan [1 ]
Song, Ruijie [1 ]
Luo, Wei [1 ]
Zhang, Weibing [2 ]
机构
[1] Yangtze Univ, Sch Phys & Optoelect Engn, Jingzhou 434023, Peoples R China
[2] Yunnan Normal Univ, Coll Phys & Elect Informat, Kunming 650500, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen storage; Mechanical properties; Electronic properties; Optical properties; Thermodynamic properties; PHONON PROPERTIES; THERMODYNAMICS; FUEL; AE;
D O I
10.1016/j.ijhydene.2024.06.352
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, the structure, hydrogen storage capacity, mechanical, electronic, optical and thermodynamic properties of hydride perovskites KCuH3 and RbCuH3 are systematically studied via using density functional theory (DFT) for the first time. The formation energies and mechanical properties of XCuH3 (X = K, Rb) hydrides indicate that KCuH3 and RbCuH3 are both thermodynamically and mechanically stable. The values of Pugh's index and Cauchy pressure for KCuH3 and RbCuH3 indicate that they are both brittle materials. In addition, their bonding types are mainly ionic bonds. Electronic properties show that these compounds are metallic. The hydrogen storage capacities of KCuH3 and RbCuH3 are calculated to be 2.78 wt% and 1.95 wt%, respectively. The optical properties indicate that KCuH3 and RbCuH3 both have high dielectric functions in the visible range and their absorption coefficient peak in the ultraviolet range. Additionally, the thermodynamic properties, including free energy, Debye temperature, melting temperature, entropy and heat capacity are calculated. The analyzed physical properties of KCuH3 and RbCuH3 perovskite hydrides suggest that they have great prospect in hydrogen applications. All the above parameters are calculated for the first time, which could contribute significantly to the development of sustainable energy technologies.
引用
收藏
页码:713 / 720
页数:8
相关论文
共 50 条
  • [41] First-principles study of NaMgH3 by fluorine anion doping for hydrogen storage
    Niu Xue-Lian
    Deng Yu-Fu
    Li Xue
    ACTA PHYSICA SINICA, 2009, 58 (10) : 7317 - 7321
  • [42] First-principles study of hydrogen storage in non-stoichiometric TiCx
    Ding, Haimin
    Fan, Xiaoliang
    Li, Chunyan
    Liu, Xiangfa
    Jiang, Dong
    Wang, Chunyang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 551 : 67 - 71
  • [43] A First-Principles Study on Titanium-Decorated Adsorbent for Hydrogen Storage
    Ma, Kai
    Lv, Erfei
    Zheng, Di
    Cui, Weichun
    Dong, Shuai
    Yang, Weijie
    Gao, Zhengyang
    Zhou, Yu
    ENERGIES, 2021, 14 (20)
  • [44] A first-principles study of hydrogen storage of high entropy alloy TiZrVMoNb
    Hu, Jutao
    Zhang, Jinjing
    Xiao, Haiyan
    Xie, Lei
    Sun, Guangai
    Shen, Huahai
    Li, Pengcheng
    Zhang, Jianwei
    Zu, Xiaotao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (40) : 21050 - 21058
  • [45] First-principles study of hydrogen storage on Li-decorated silicene
    Li, Feng
    Zhang, Chang-wen
    Luan, Hang-xing
    Wang, Pei-ji
    JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (10)
  • [46] First-principles study on lithium and magnesium nitrogen hydrides for hydrogen storage
    Tsumuraya, T.
    Shishidou, T.
    Oguchi, T.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 446 : 323 - 327
  • [47] Hydrogen storage in Li and Ti decorated borazine: A first-principles study
    Li, Meng
    Li, Jinming
    Sun, Qiang
    Jia, Yu
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (06)
  • [48] Hydrogen Storage in Bilayer Hexagonal Boron Nitride: A First-Principles Study
    Rai, Dibya Prakash
    Chettri, Bhanu
    Patra, Prasanta Kumar
    Sattar, Shahid
    ACS OMEGA, 2021, 6 (45): : 30362 - 30370
  • [49] Photocatalytic hydrogen production and storage in carbon nanotubes: a first-principles study
    Song, Xiaohan
    Bu, Hongxia
    Fan, Yingcai
    Wang, Junru
    Zhao, Mingwen
    RSC ADVANCES, 2022, 12 (27) : 17029 - 17035
  • [50] Enhancing hydrogen storage properties of titanium hydride TiH2 with vacancy defects and uniaxial strain: A first-principles study
    El bahri, Abderrahim
    Ez-Zahraouy, Hamid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 87 : 678 - 685