Asymptotic behavior of a viscoelastic wave equation with a delay in internal fractional feedback

被引:6
|
作者
Aounallah, Radhouane [1 ]
Choucha, Adbelbaki [2 ,3 ]
Boulaaras, Salah [4 ]
Zarai, Abderrahmane [5 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Dept Math, Sidi Bell Abbas, Algeria
[2] Amar Teleji Laghouat Univ, Fac Sci, Dept Mat Sci, Laghouat, Algeria
[3] Ghardaia Univ, Lab Math & Appl Sci, Ghardaia, Algeria
[4] Qassim Univ, Coll Sci, Dept Math, Buraydah 51452, Saudi Arabia
[5] Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Dept Math & Comp Sci, Tebessa 12002, Algeria
来源
ARCHIVES OF CONTROL SCIENCES | 2024年 / 34卷 / 02期
关键词
global existence; general decay; relaxation function; delay fractional feedback; partial differential equations; GENERAL DECAY; ENERGY DECAY; BLOW-UP; BOUNDARY; STABILIZATION; EXISTENCE; SYSTEMS;
D O I
10.24425/acs.2024.149665
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the viscoelastic wave equation with a time delay term in internal fractional feedback. By employing the energy method along with the Faedo-Galerkin procedure, we establish the global existence of solutions, subject to certain conditions. Additionally, we demonstrate how appropriate Lyapunov functionals can lead to general decay results of the energy.
引用
收藏
页码:379 / 413
页数:35
相关论文
共 50 条
  • [31] On the thermodynamically consistent fractional wave equation for viscoelastic solids
    Sven von Ende
    Alexander Lion
    Rolf Lammering
    Acta Mechanica, 2011, 221 : 1 - 10
  • [32] On the thermodynamically consistent fractional wave equation for viscoelastic solids
    von Ende, Sven
    Lion, Alexander
    Lammering, Rolf
    ACTA MECHANICA, 2011, 221 (1-2) : 1 - 10
  • [33] Fractional Nonlinearity for the Wave Equation with Friction and Viscoelastic Damping
    Djaouti, Abdelhamid Mohammed
    Latif, Muhammad Amer
    AXIOMS, 2022, 11 (10)
  • [34] Asymptotic behaviour of nonlinear viscoelastic wave equations with boundary feedback
    Choucha, Abdelbaki
    Mahdi, Khaled
    Boulaaras, Salah
    Jan, Rashid
    Radwan, Taha
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2025, 33 (01):
  • [35] Global nonexistence of solutions for viscoelastic wave equation with delay
    Kang, Jum-Ran
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) : 6834 - 6841
  • [36] ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR LINEAR EVOLUTIONARY BOUNDARY VALUE PROBLEM OF VISCOELASTIC DAMPED WAVE EQUATION
    Berbiche, Mohamed
    MATHEMATICA BOHEMICA, 2020, 145 (02): : 205 - 223
  • [37] ASYMPTOTIC BEHAVIOR AND BLOW-UP OF SOLUTIONS FOR A NONLINEAR VISCOELASTIC WAVE EQUATION WITH BOUNDARY DISSIPATION
    Tahamtani, Faramarz
    Peyravi, Amir
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 1921 - 1943
  • [38] Asymptotic estimates of solution to damped fractional wave equation
    Wang, Meizhong
    Fan, Dashan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [39] Stabilization of the Schrodinger equation with a delay term in boundary feedback or internal feedback
    Nicaise, Serge
    Rebiai, Salah-eddine
    PORTUGALIAE MATHEMATICA, 2011, 68 (01) : 19 - 39
  • [40] Asymptotic Behavior for High Moments of the Fractional Heat Equation with Fractional Noise
    Yan, Litan
    Yu, Xianye
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (04) : 1617 - 1646