Single-photon circulator by spinning optical resonators

被引:2
|
作者
Li, Jing [1 ,2 ,3 ]
Lu, Tian-Xiang [4 ]
Peng, Meiyu [1 ,2 ,3 ]
Kuang, Le-Man [1 ,2 ,3 ]
Jing, Hui [1 ,2 ,3 ]
Zhou, Lan [1 ,2 ,3 ]
机构
[1] Hunan Normal Univ, Minist Educ, Synerget Innovat Ctr Quantum Quantum & Applicat, Key Lab Low Dimens Quantum Struct & Quantum Contro, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Dept Phys, Changsha 410081, Peoples R China
[3] Hunan Normal Univ, Inst Interdisciplinary Studies, Changsha 410081, Peoples R China
[4] Gannan Normal Univ, Coll Phys & Elect Informat, Ganzhou 341000, Jiangxi, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 20期
基金
中国国家自然科学基金;
关键词
PARITY-TIME SYMMETRY; NON-RECIPROCITY; BLOCKADE; ATOM;
D O I
10.1364/OE.534292
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A circulator is one of the crucial devices in quantum networks and simulations. We propose a four-port circulator that regulates the flow of single photons at muti-frequency points by studying the coherent transmission of a single photon in a coupled system of two resonators and two waveguides. When both resonators are static or rotate at the same angular velocity, the single-photon transport demonstrates reciprocity; however, when the angular velocities differ, four distinct frequency points emerge where photon circulation can occur. In particular, when the angular velocities of the two resonators are equal and opposite, there are two different frequency points where photon circulation can be achieved, and there is a frequency point where a single photon input from any waveguide can be completely routed to the other waveguide. Interestingly, by rotating the two resonators, the single-photon circulation suppressed by the internal defect-induced backscattering can be restored. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:35781 / 35793
页数:13
相关论文
共 50 条
  • [21] Single-photon optical bistability in a small nonlinear cavity
    Protsenko, Igor E.
    Uskov, Alexander V.
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [22] Optical Modes in Elliptical Microcavities for Single-Photon Sources
    D. R. Kazanov
    A. M. Monakhov
    JETP Letters, 2023, 117 : 422 - 427
  • [23] Ultrafast superconducting single-photon optical detectors and their applications
    Sobolewski, R
    Verevkin, A
    Gol'tsman, GN
    Lipatov, A
    Wilsher, K
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2003, 13 (02) : 1151 - 1157
  • [24] Single-photon description of the lossless optical Y coupler
    Schwarze, Christopher R.
    Manni, Anthony D.
    Simon, David S.
    Sergienko, Alexander V.
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [25] Optical properties of superconducting nanowire single-photon detectors
    Anant, Vikas
    Kerman, Andrew J.
    Dauler, Eric A.
    Yang, Joel K. W.
    Rosfjord, Kristine M.
    Berggren, Karl K.
    OPTICS EXPRESS, 2008, 16 (14): : 10750 - 10761
  • [26] Silicon planar technology for single-photon optical detectors
    Sciacca, E
    Giudice, AC
    Sanfilippo, D
    Lombardo, S
    Zappa, F
    Cosentino, R
    Mazzillo, M
    Ghioni, M
    Fallica, G
    Belluso, M
    Bonanno, G
    Cova, S
    Riminia, E
    OPTICAL SENSING, 2004, 5459 : 227 - 236
  • [27] Silicon planar technology for single-photon optical detectors
    Sciacca, E
    Giudice, AC
    Sanfilippo, D
    Zappa, F
    Lombardo, S
    Consentino, R
    Di Franco, C
    Ghioni, M
    Fallica, G
    Bonanno, G
    Cova, S
    Rimini, E
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (04) : 918 - 925
  • [28] Optical Modes in Elliptical Microcavities for Single-Photon Sources
    Kazanov, D. R.
    Monakhov, A. M.
    JETP LETTERS, 2023, 117 (06) : 422 - 427
  • [29] Nanoscale Optical Detector with Single-Photon and Multiphoton Sensitivity
    Bitauld, David
    Marsili, Francesco
    Gaggero, Alessandro
    Mattioli, Francesco
    Leoni, Roberto
    Nejad, Saeedeh Jahanmiri
    Levy, Francis
    Fiore, Andrea
    NANO LETTERS, 2010, 10 (08) : 2977 - 2981
  • [30] Single-photon detectors for optical quantum information applications
    Robert H. Hadfield
    Nature Photonics, 2009, 3 : 696 - 705