Prevalence, risk factors and characterisation of individuals with long COVID using Electronic Health Records in over 1.5 million COVID cases in England
被引:2
|
作者:
Wang, Han-I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ York, Dept Hlth Sci, Seebohm Rowntree Bldg, York YO10 5DD, England
UCL, Inst Hlth Informat, London, EnglandUniv York, Dept Hlth Sci, Seebohm Rowntree Bldg, York YO10 5DD, England
Wang, Han-I.
[1
,5
]
论文数: 引用数:
h-index:
机构:
Doran, Tim
[1
]
Crooks, Michael G.
论文数: 0引用数: 0
h-index: 0
机构:
Hull York Med Sch, York, EnglandUniv York, Dept Hlth Sci, Seebohm Rowntree Bldg, York YO10 5DD, England
Crooks, Michael G.
[2
]
论文数: 引用数:
h-index:
机构:
Khunti, Kamlesh
[3
]
Heightman, Melissa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Coll London Hosp NHS Fdn Trust, London, EnglandUniv York, Dept Hlth Sci, Seebohm Rowntree Bldg, York YO10 5DD, England
Heightman, Melissa
[4
]
Gonzalez-Izquierdo, Arturo
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Inst Hlth Informat, London, EnglandUniv York, Dept Hlth Sci, Seebohm Rowntree Bldg, York YO10 5DD, England
Gonzalez-Izquierdo, Arturo
[5
]
Arfeen, Muhammad Qummer Ul
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Inst Hlth Informat, London, EnglandUniv York, Dept Hlth Sci, Seebohm Rowntree Bldg, York YO10 5DD, England
Arfeen, Muhammad Qummer Ul
[5
]
Loveless, Antony
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Inst Hlth Informat, STIMULATE ICP Consortium, London, EnglandUniv York, Dept Hlth Sci, Seebohm Rowntree Bldg, York YO10 5DD, England
Loveless, Antony
[6
]
Banerjee, Amitava
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Inst Hlth Informat, London, EnglandUniv York, Dept Hlth Sci, Seebohm Rowntree Bldg, York YO10 5DD, England
Banerjee, Amitava
[5
]
Van Der Feltz-Cornelis, Christina
论文数: 0引用数: 0
h-index: 0
机构:
Univ York, Dept Hlth Sci, Seebohm Rowntree Bldg, York YO10 5DD, England
Hull York Med Sch, York, England
UCL, Inst Hlth Informat, London, EnglandUniv York, Dept Hlth Sci, Seebohm Rowntree Bldg, York YO10 5DD, England
Van Der Feltz-Cornelis, Christina
[1
,2
,5
]
机构:
[1] Univ York, Dept Hlth Sci, Seebohm Rowntree Bldg, York YO10 5DD, England
[2] Hull York Med Sch, York, England
[3] Univ Leicester, Diabet Res Ctr, Leicester, England
[4] Univ Coll London Hosp NHS Fdn Trust, London, England
[5] UCL, Inst Hlth Informat, London, England
[6] UCL, Inst Hlth Informat, STIMULATE ICP Consortium, London, England
Long COVID;
Post SARS-CoV-2;
Symptoms;
Prevalence;
Risk factor;
CARE;
D O I:
10.1016/j.jinf.2024.106235
中图分类号:
R51 [传染病];
学科分类号:
100401 ;
摘要:
Objectives: This study examines clinically confirmed long-COVID symptoms and diagnosis among individuals with COVID in England, aiming to understand prevalence and associated risk factors using electronic health records. To further understand long COVID, the study also explored differences in risks and symptom profiles in three subgroups: hospitalised, non-hospitalised, and untreated COVID cases. Methods: A population-based longitudinal cohort study was conducted using data from 1,554,040 individuals with confirmed SARS-CoV-2 infection via Clinical Practice Research Datalink. Descriptive statistics explored the prevalence of long COVID symptoms 12 weeks post-infection, and Cox regression models analysed the associated risk factors. Sensitivity analysis was conducted to test the impact of right-censoring data. Results: During an average 400-day follow-up, 7.4% of individuals with COVID had at least one long-COVID symptom after acute phase, yet only 0.5% had long-COVID diagnostic codes. The most common long-COVID symptoms included cough (17.7%), back pain (15.2%), stomach-ache (11.2%), headache (11.1%), and sore throat (10.0%). The same trend was observed in all three subgroups. Risk factors associated with long-COVID symptoms were female sex, non-white ethnicity, obesity, and pre-existing medical conditions like anxiety, depression, type II diabetes, and somatic symptom disorders. Conclusions: This study is the first to investigate the prevalence and risk factors of clinically confirmed longCOVID in the general population. The findings could help clinicians identify higher risk individuals for timely intervention and allow decision-makers to more efficiently allocate resources for managing long-COVID. (c) 2024 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
机构:
Imam Abdulrahman Bin Faisal Univ, Coll Med, Dept Family & Community Med, Dammam, Saudi ArabiaImam Abdulrahman Bin Faisal Univ, Coll Med, Dept Family & Community Med, Dammam, Saudi Arabia
Aldhawyan, Adam F.
Busaad, Mohammed A.
论文数: 0引用数: 0
h-index: 0
机构:
Imam Abdulrahman Bin Faisal Univ, Coll Med, Dept Family & Community Med, Dammam, Saudi ArabiaImam Abdulrahman Bin Faisal Univ, Coll Med, Dept Family & Community Med, Dammam, Saudi Arabia
Busaad, Mohammed A.
Almaghlouth, Nawaf E.
论文数: 0引用数: 0
h-index: 0
机构:
Imam Abdulrahman Bin Faisal Univ, Coll Med, Dammam, Saudi ArabiaImam Abdulrahman Bin Faisal Univ, Coll Med, Dept Family & Community Med, Dammam, Saudi Arabia
Almaghlouth, Nawaf E.
Alnasser, Abdullah H.
论文数: 0引用数: 0
h-index: 0
机构:
Imam Abdulrahman Bin Faisal Univ, Coll Med, Dammam, Saudi ArabiaImam Abdulrahman Bin Faisal Univ, Coll Med, Dept Family & Community Med, Dammam, Saudi Arabia
Alnasser, Abdullah H.
Alnasser, Jomana A.
论文数: 0引用数: 0
h-index: 0
机构:
Imam Abdulrahman Bin Faisal Univ, Coll Med, Dammam, Saudi ArabiaImam Abdulrahman Bin Faisal Univ, Coll Med, Dept Family & Community Med, Dammam, Saudi Arabia
Alnasser, Jomana A.
Almansour, Abdulelah H.
论文数: 0引用数: 0
h-index: 0
机构:
Imam Abdulrahman Bin Faisal Univ, Coll Med, Dept Family & Community Med, Dammam, Saudi ArabiaImam Abdulrahman Bin Faisal Univ, Coll Med, Dept Family & Community Med, Dammam, Saudi Arabia
Almansour, Abdulelah H.
Alharkan, Khalid S.
论文数: 0引用数: 0
h-index: 0
机构:
Imam Abdulrahman Bin Faisal Univ, Coll Med, Dept Family & Community Med, Dammam, Saudi ArabiaImam Abdulrahman Bin Faisal Univ, Coll Med, Dept Family & Community Med, Dammam, Saudi Arabia