Prevalence, risk factors and characterisation of individuals with long COVID using Electronic Health Records in over 1.5 million COVID cases in England

被引:2
|
作者
Wang, Han-I. [1 ,5 ]
Doran, Tim [1 ]
Crooks, Michael G. [2 ]
Khunti, Kamlesh [3 ]
Heightman, Melissa [4 ]
Gonzalez-Izquierdo, Arturo [5 ]
Arfeen, Muhammad Qummer Ul [5 ]
Loveless, Antony [6 ]
Banerjee, Amitava [5 ]
Van Der Feltz-Cornelis, Christina [1 ,2 ,5 ]
机构
[1] Univ York, Dept Hlth Sci, Seebohm Rowntree Bldg, York YO10 5DD, England
[2] Hull York Med Sch, York, England
[3] Univ Leicester, Diabet Res Ctr, Leicester, England
[4] Univ Coll London Hosp NHS Fdn Trust, London, England
[5] UCL, Inst Hlth Informat, London, England
[6] UCL, Inst Hlth Informat, STIMULATE ICP Consortium, London, England
关键词
Long COVID; Post SARS-CoV-2; Symptoms; Prevalence; Risk factor; CARE;
D O I
10.1016/j.jinf.2024.106235
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Objectives: This study examines clinically confirmed long-COVID symptoms and diagnosis among individuals with COVID in England, aiming to understand prevalence and associated risk factors using electronic health records. To further understand long COVID, the study also explored differences in risks and symptom profiles in three subgroups: hospitalised, non-hospitalised, and untreated COVID cases. Methods: A population-based longitudinal cohort study was conducted using data from 1,554,040 individuals with confirmed SARS-CoV-2 infection via Clinical Practice Research Datalink. Descriptive statistics explored the prevalence of long COVID symptoms 12 weeks post-infection, and Cox regression models analysed the associated risk factors. Sensitivity analysis was conducted to test the impact of right-censoring data. Results: During an average 400-day follow-up, 7.4% of individuals with COVID had at least one long-COVID symptom after acute phase, yet only 0.5% had long-COVID diagnostic codes. The most common long-COVID symptoms included cough (17.7%), back pain (15.2%), stomach-ache (11.2%), headache (11.1%), and sore throat (10.0%). The same trend was observed in all three subgroups. Risk factors associated with long-COVID symptoms were female sex, non-white ethnicity, obesity, and pre-existing medical conditions like anxiety, depression, type II diabetes, and somatic symptom disorders. Conclusions: This study is the first to investigate the prevalence and risk factors of clinically confirmed longCOVID in the general population. The findings could help clinicians identify higher risk individuals for timely intervention and allow decision-makers to more efficiently allocate resources for managing long-COVID. (c) 2024 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] PREVALENCE, RISK FACTORS, AND CHARACTERIZATION OF INDIVIDUALS WITH LONG COVID USING ELECTRONIC HEALTH RECORDS IN OVER 1.5 MILLION COVID CASES IN ENGLAND
    Wang, H., I
    Doran, T.
    Crooks, M.
    Khunti, K.
    Heightman, M.
    Gonzalez-Izquierdo, A.
    Arfeen, M.
    Banerjee, A.
    Van der Feltz-Cornelis, C.
    VALUE IN HEALTH, 2023, 26 (12) : S204 - S204
  • [2] Prevalence and risk factors for long COVID among adults in Scotland using electronic health records: a national, retrospective, observational cohort study
    Jeffrey, Karen
    Woolford, Lana
    Maini, Rishma
    Basetti, Siddharth
    Batchelor, Ashleigh
    Weatherill, David
    White, Chris
    Hammersley, Vicky
    Millington, Tristan
    Macdonald, Calum
    Quint, Jennifer K.
    Kerr, Robin
    Kerr, Steven
    Shah, Syed Ahmar
    Rudan, Igor
    Fagbamigbe, Adeniyi Francis
    Simpson, Colin R.
    Katikireddi, Srinivasa Vittal
    Robertson, Chris
    Ritchie, Lewis
    Sheikh, Aziz
    Daines, Luke
    ECLINICALMEDICINE, 2024, 71
  • [3] Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records
    Ellen J. Thompson
    Dylan M. Williams
    Alex J. Walker
    Ruth E. Mitchell
    Claire L. Niedzwiedz
    Tiffany C. Yang
    Charlotte F. Huggins
    Alex S. F. Kwong
    Richard J. Silverwood
    Giorgio Di Gessa
    Ruth C. E. Bowyer
    Kate Northstone
    Bo Hou
    Michael J. Green
    Brian Dodgeon
    Katie J. Doores
    Emma L. Duncan
    Frances M. K. Williams
    Andrew Steptoe
    David J. Porteous
    Rosemary R. C. McEachan
    Laurie Tomlinson
    Ben Goldacre
    Praveetha Patalay
    George B. Ploubidis
    Srinivasa Vittal Katikireddi
    Kate Tilling
    Christopher T. Rentsch
    Nicholas J. Timpson
    Nishi Chaturvedi
    Claire J. Steves
    Nature Communications, 13
  • [4] The Role of Electronic Health Records to Identify Risk Factors for Developing Long COVID: A Scoping Review
    Santos, Ema
    Fernandes, Afonso
    Graca, Manuel
    Rocha, Nelson Pacheco
    GOOD PRACTICES AND NEW PERSPECTIVES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2, WORLDCIST 2024, 2024, 986 : 118 - 128
  • [5] Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records
    Thompson, Ellen J.
    Williams, Dylan M.
    Walker, Alex J.
    Mitchell, Ruth E.
    Niedzwiedz, Claire L.
    Yang, Tiffany C.
    Huggins, Charlotte F.
    Kwong, Alex S. F.
    Silverwood, Richard J.
    Di Gessa, Giorgio
    Bowyer, Ruth C. E.
    Northstone, Kate
    Hou, Bo
    Green, Michael J.
    Dodgeon, Brian
    Doores, Katie J.
    Duncan, Emma L.
    Williams, Frances M. K.
    Steptoe, Andrew
    Porteous, David J.
    McEachan, Rosemary R. C.
    Tomlinson, Laurie
    Goldacre, Ben
    Patalay, Praveetha
    Ploubidis, George B.
    Katikireddi, Srinivasa Vittal
    Tilling, Kate
    Rentsch, Christopher T.
    Timpson, Nicholas J.
    Chaturvedi, Nishi
    Steves, Claire J.
    Walker, Alex J.
    MacKenna, Brian
    Inglesby, Peter
    Curtis, Helen J.
    Morton, Caroline E.
    Morley, Jessica
    Mehrkar, Amir
    Bacon, Seb
    Hickman, George
    Bates, Chris
    Croker, Richard
    Evans, David
    Ward, Tom
    Cockburn, Jonathan
    Davy, Simon
    Bhaskaran, Krishnan
    Schultze, Anna
    Williamson, Elizabeth J.
    Hulme, William J.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [6] COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records
    Thygesen, Johan H.
    Tomlinson, Christopher
    Hollings, Sam
    Mizani, Mehrdad A.
    Handy, Alex
    Akbari, Ashley
    Banerjee, Amitava
    Cooper, Jennifer
    Lai, Alvina G.
    Li, Kezhi
    Mateen, Bilal A.
    Sattar, Naveed
    Sofat, Reecha
    Torralbo, Ana
    Wu, Honghan
    Wood, Angela
    Sterne, Jonathan A. C.
    Pagel, Christina
    Whiteley, William N.
    Sudlow, Cathie
    Hemingway, Harry
    Denaxas, Spiros
    LANCET DIGITAL HEALTH, 2022, 4 (07): : E542 - E557
  • [7] Prevalence of long COVID and risk factors of long COVID in Thai patients
    Petborom, Pichaya
    Langlongsatit, Panyada
    Aeimsanudom, Sudee
    Tanthanawat, Phiramon
    Trakarnwijitr, Tnaton
    Cherdchuvichaikul, Thinatta
    RESPIROLOGY, 2024, 29 : 235 - 235
  • [8] Difference in long COVID prevalence due to different definitions and long COVID related risk factors
    Coste, J.
    Delpierre, C.
    Tebeka, S.
    Lemogne, C.
    Robineau, O.
    Steichen, O.
    Rushyizekera, M.
    van den Akker, M.
    Makovski, T. T.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2024, 34
  • [9] Determining risk factors for Long COVID using Positive Unlabeled learning on Electronic Health Records data from NIH N3C
    Sengupta, Saurav
    Loomba, Johanna
    Sharma, Suchetha
    Chapman, Scott A.
    Brown, Donald E.
    22ND IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA 2023, 2023, : 430 - 436
  • [10] Identifying Long COVID Definitions, Predictors, and Risk Factors in the United States: A Scoping Review of Data Sources Utilizing Electronic Health Records
    Luke, Rayanne A.
    Shaw Jr, George
    Saarunya, Geetha
    Mollalo, Abolfazl
    INFORMATICS-BASEL, 2024, 11 (02):