An Efficient Green AI Approach to Time Series Forecasting Based on Deep Learning

被引:0
|
作者
Balderas, Luis [1 ,2 ,3 ,4 ]
Lastra, Miguel [2 ,3 ,4 ,5 ]
Benitez, Jose M. [1 ,2 ,3 ,4 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada 18071, Spain
[2] Univ Granada, Distributed Computat Intelligence & Time Series La, Granada 18071, Spain
[3] Univ Granada, Sport & Hlth Univ Res Inst, Granada 18071, Spain
[4] Univ Granada, Andalusian Res Inst Data Sci & Computat Intelligen, Granada 18071, Spain
[5] Univ Granada, Dept Software Engn, Granada 18071, Spain
关键词
Green AI; dense feed-forward neural network simplification; time series forecasting;
D O I
10.3390/bdcc8090120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series forecasting is undoubtedly a key area in machine learning due to the numerous fields where it is crucial to estimate future data points of sequences based on a set of previously observed values. Deep learning has been successfully applied to this area. On the other hand, growing concerns about the steady increase in the amount of resources required by deep learning-based tools have made Green AI gain traction as a move towards making machine learning more sustainable. In this paper, we present a deep learning-based time series forecasting methodology called GreeNNTSF, which aims to reduce the size of the resulting model, thereby diminishing the associated computational and energetic costs without giving up adequate forecasting performance. The methodology, based on the ODF2NNA algorithm, produces models that outperform state-of-the-art techniques not only in terms of prediction accuracy but also in terms of computational costs and memory footprint. To prove this claim, after presenting the main state-of-the-art methods that utilize deep learning for time series forecasting and introducing our methodology we test GreeNNTSF on a selection of real-world forecasting problems that are commonly used as benchmarks, such as SARS-CoV-2 and PhysioNet (medicine), Brazilian Weather (climate), WTI and Electricity (economics), and Traffic (smart cities). The results of each experiment conducted objectively demonstrate, rigorously following the experimentation presented in the original papers that addressed these problems, that our method is more competitive than other state-of-the-art approaches, producing more accurate and efficient models.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] An efficient time series forecasting model based on fuzzy time series
    Singh, Pritpal
    Borah, Bhogeswar
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (10) : 2443 - 2457
  • [32] A machine learning approach for forecasting hierarchical time series
    Mancuso, Paolo
    Piccialli, Veronica
    Sudoso, Antonio M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 182
  • [33] Wind Power Forecasting with Deep Learning Networks: Time-Series Forecasting
    Lin, Wen-Hui
    Wang, Ping
    Chao, Kuo-Ming
    Lin, Hsiao-Chung
    Yang, Zong-Yu
    Lai, Yu-Huang
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [34] A Deep Learning CNN and AI-Tuned SVM for Electricity Consumption Forecasting: Multivariate Time Series Data
    Chan, S.
    Oktavianti, I.
    Puspita, V.
    2019 IEEE 10TH ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (IEMCON), 2019, : 488 - 494
  • [35] A Curvelet based Approach to Time Series Forecasting
    Zou, Yingchao
    He, Kaijian
    Jiang, Meiying
    3RD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, ITQM 2015, 2015, 55 : 1325 - 1330
  • [36] Financial Time Series Forecasting with the Deep Learning Ensemble Model
    He, Kaijian
    Yang, Qian
    Ji, Lei
    Pan, Jingcheng
    Zou, Yingchao
    MATHEMATICS, 2023, 11 (04)
  • [37] Deep Learning for Time Series Forecasting: Tutorial and Literature Survey
    Benidis, Konstantinos
    Rangapuram, Syama Sundar
    Flunkert, Valentin
    Wang, Yuyang
    Maddix, Danielle
    Turkmen, Caner
    Gasthaus, Jan
    Bohlke-Schneider, Michael
    Salinas, David
    Stella, Lorenzo
    Aubet, Francois-Xavier
    Callot, Laurent
    Januschowski, Tim
    ACM COMPUTING SURVEYS, 2023, 55 (06)
  • [38] Time Series Forecasting on Solar Irradiation using Deep Learning
    Sorkun, Murat Cihan
    Paoli, Christophe
    Incel, Ozlem Durmaz
    2017 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2017, : 151 - 155
  • [39] Deep learning models for forecasting aviation demand time series
    Andreas Kanavos
    Fotios Kounelis
    Lazaros Iliadis
    Christos Makris
    Neural Computing and Applications, 2021, 33 : 16329 - 16343
  • [40] Financial Time Series Forecasting Applying Deep Learning Algorithms
    Solis, Erik
    Noboa, Sherald
    Cuenca, Erick
    INFORMATION AND COMMUNICATION TECHNOLOGIES (TICEC 2021), 2021, 1456 : 46 - 60