Improved Strongly Polynomial Algorithms for Deterministic MDPs, 2VPI Feasibility, and Discounted All-Pairs Shortest Paths

被引:0
|
作者
Karczmarz, Adam [1 ,2 ]
机构
[1] Univ Warsaw, Inst Informat, Warsaw, Poland
[2] IDEAS NCBR, Warsaw, Poland
基金
欧洲研究理事会;
关键词
2; VARIABLES; LINEAR INEQUALITIES; INTEGER PROGRAMS; TIME ALGORITHM; SIMPLEX;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We revisit the problem of finding optimal strategies for deterministic Markov Decision Processes (DMDPs), and a closely related problem of testing feasibility of systems of m linear inequalities on n real variables with at most two variables per inequality (2VPI). We give a randomized trade-off algorithm solving both problems and running in (O) over tilde (nmh + (n/h)(3)) time using (O) over tilde (n(2) /h + m) space for any parameter h epsilon [1; n]. In particular, using subquadratic space we get (O) over tilde (nm + n(3/2) m(3/4)) running time, which improves by a polynomial factor upon all the known upper bounds for non-dense instances with m = O (n(2-epsilon)). Moreover, using linear space we match the randomized (O) over tilde (nm + n(3)) time bound of Cohen and Megiddo [SICOMP'94] that required (theta) over tilde (n(2) + m) space. Additionally, we show a new algorithm for the Discounted All-Pairs Shortest Paths problem, introduced by Madani et al. [TALG'10], that extends the DMDPs with optional end vertices. For the case of uniform discount factors, we give a deterministic algorithm running in (O) over tilde (n(3/2)m(3/4)) time, which improves significantly upon the randomized bound (O) over tilde (n(2) root m) of Madani et al.
引用
收藏
页码:154 / 172
页数:19
相关论文
共 30 条
  • [21] All-Pairs Shortest Paths Algorithm for Regular 2D Mesh Topologies
    Ciric, Vladimir
    Cvetkovic, Aleksandar
    Milentijevic, Ivan
    Vojinovic, Oliver
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2016, 22 (11) : 1437 - 1455
  • [22] All-Pairs Shortest Paths in O(n2) Time with High Probability
    Peres, Yuval
    Sotnikov, Dmitry
    Sudakov, Benny
    Zwick, Uri
    JOURNAL OF THE ACM, 2013, 60 (04)
  • [23] All-Pairs Shortest Paths in O(n2) time with high probability
    Peres, Yuval
    Sotnikov, Dmitry
    Sudakov, Benny
    Zwick, Uri
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 663 - 672
  • [24] Fast algorithms for maximum subset matching and all-pairs shortest paths in graphs with a (not so) small vertex cover
    Alon, Noga
    Yuster, Raphael
    ALGORITHMS - ESA 2007, PROCEEDINGS, 2007, 4698 : 175 - +
  • [25] A Deterministic Distributed Algorithm for ExactWeighted All-Pairs Shortest Paths in (O)over-tilde (n3/2) Rounds
    Agarwal, Udit
    Ramachandran, Vijaya
    King, Valerie
    Pontecorvi, Matteo
    PODC'18: PROCEEDINGS OF THE 2018 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2018, : 199 - 205
  • [26] Fully-Dynamic All-Pairs Shortest Paths: Improved Worst-Case Time and Space Bounds
    Gutenberg, Maximilian Probst
    Wulff-Nilsen, Christian
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 2562 - 2574
  • [27] Fully-Dynamic All-Pairs Shortest Paths: Improved Worst-Case Time and Space Bounds
    Gutenberg, Maximilian Probst
    Wulff-Nilseny, Christian
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 2562 - 2574
  • [28] All-pairs nearly 2-approximate shortest paths in O(n2 polylog n) time
    Baswana, Surender
    Goyal, Vishrut
    Sen, Sandeep
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (01) : 84 - 93
  • [29] All-pairs nearly 2-approximate shortest-paths in O(n2 polylog n) time
    Baswana, S
    Goyal, V
    Sen, S
    STACS 2005, PROCEEDINGS, 2005, 3404 : 666 - 679
  • [30] Fully Dynamic (2+ε) Approximate All-Pairs Shortest Paths with Fast Query and Close to Linear Update Time
    Bernstein, Aaron
    2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 693 - 702