Two-stage coevolutionary constrained multi-objective optimization algorithm for solving optimal power flow problems with wind power and FACTS devices

被引:2
|
作者
Zhu, Jun-Hua [1 ]
Wang, Jie-Sheng [1 ]
Zheng, Yue [1 ]
Zhang, Xing-Yue [1 ]
Liu, Xun [1 ]
Wang, Xiao-Tian [1 ]
Zhang, Song-Bo [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Elect & Informat Engn, Anshan, Liaoning, Peoples R China
关键词
Optimal power flow; Wind energy; FACTS; Multi-objective constrained optimization; Coevolution; ECONOMIC EMISSION DISPATCH; STOCHASTIC WIND; SEARCH;
D O I
10.1016/j.renene.2024.121087
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As a large amount of wind energy is integrated into the grid, the randomness it brings poses a challenge to modern power systems. The application of Flexible AC Transmission Systems (FACTS) in the grid is becoming more and more common, and it is necessary to consider how to choose suitable equipment in the appropriate locations. In this paper, a multi-objective optimal power flow (MOOPF) model with wind farms and FACTS devices is established. The Weibull probability density function is used to establish the wind speed model, and the cost problem brought by wind power is considered. The locations and ratings of thyristor-controlled series compensators, thyristor-controlled phase shifters, and static VAR compensators are added to the system as control variables. In addition, the constraints on the prohibited operating areas of thermal power generators and the valve point effect are also considered. Coevolutionary constrained multi-objective optimization algorithm (CCMO) is an advanced technology, and this paper improves it and names it two-stage coevolutionary constrained multi-objective optimization algorithm (TSCCMO). The proposed algorithm uses the constraint violation value as an additional objective function in the sub-population environmental selection process, and integrates a neighborhood selection strategy into the mating selection process. The population evolution process is divided into two stages, in the first stage the two populations cooperate weakly, and in the second stage the two populations will have strong cooperation. TSCCMO is used to solve this complex constrained MOOPF problem, and its results are compared and analyzed with CCMO, NSGA-II-CDP, C3M, and PPS. The comprehensive performance of TSCCMO is the best among the 6 cases.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Multi-objective adaptive clonal selection algorithm for solving optimal power flow considering multi-type FACTS devices and load uncertainty
    Rao, B. Srinivasa
    Vaisakh, K.
    APPLIED SOFT COMPUTING, 2014, 23 : 286 - 297
  • [22] Optimal Allocation of FACTS Devices by Using Multi-Objective Optimal Power Flow and Genetic Algorithms
    Ippolito, Lucio
    La Cortiglia, Antonio
    Petrocelli, Michele
    INTERNATIONAL JOURNAL OF EMERGING ELECTRIC POWER SYSTEMS, 2006, 7 (02): : 1 - 19
  • [23] Multi-objective optimal power flow using grasshopper optimization algorithm
    Mandal, Barun
    Roy, Provas Kumar
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (02): : 623 - 645
  • [24] A New Multi-objective Jaya Algorithm for Solving the Optimal Power Flow Problem
    Berrouk, F.
    Bouchekara, H. R. E. H.
    Chaib, A. E.
    Abido, M. A.
    Bounaya, K.
    Javaid, M. S.
    JOURNAL OF ELECTRICAL SYSTEMS, 2018, 14 (03) : 165 - 181
  • [25] Differential search algorithm for solving multi-objective optimal power flow problem
    Abaci, Kadir
    Yamacli, Volkan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2016, 79 : 1 - 10
  • [26] A Two-Stage Multi-Objective Optimal Power Flow Algorithm for Hybrid AC/DC Grids with VSC-HVDC
    Li, Yang
    Li, Yahui
    Li, Guoqing
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [27] CAVOA: A chaotic optimization algorithm for optimal power flow with facts devices and stochastic wind power generation
    Mohamed, Amal Amin
    Kamel, Salah
    Hassan, Mohamed H.
    Zeinoddini-Meymand, Hamed
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (01) : 121 - 144
  • [28] Multi-objective optimal power flow with stochastic wind and solar power
    Li, Shuijia
    Gong, Wenyin
    Wang, Ling
    Gu, Qiong
    APPLIED SOFT COMPUTING, 2022, 114
  • [29] A two-stage evolutionary algorithm assisted by multi-archives for constrained multi-objective optimization
    Zhang, Wenjuan
    Liu, Jianchang
    Zhang, Wei
    Liu, Yuanchao
    Tan, Shubin
    APPLIED SOFT COMPUTING, 2024, 162
  • [30] A two-stage evolutionary algorithm based on three indicators for constrained multi-objective optimization
    Dong, Jun
    Gong, Wenyin
    Ming, Fei
    Wang, Ling
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195