Two-stage coevolutionary constrained multi-objective optimization algorithm for solving optimal power flow problems with wind power and FACTS devices

被引:2
|
作者
Zhu, Jun-Hua [1 ]
Wang, Jie-Sheng [1 ]
Zheng, Yue [1 ]
Zhang, Xing-Yue [1 ]
Liu, Xun [1 ]
Wang, Xiao-Tian [1 ]
Zhang, Song-Bo [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Elect & Informat Engn, Anshan, Liaoning, Peoples R China
关键词
Optimal power flow; Wind energy; FACTS; Multi-objective constrained optimization; Coevolution; ECONOMIC EMISSION DISPATCH; STOCHASTIC WIND; SEARCH;
D O I
10.1016/j.renene.2024.121087
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As a large amount of wind energy is integrated into the grid, the randomness it brings poses a challenge to modern power systems. The application of Flexible AC Transmission Systems (FACTS) in the grid is becoming more and more common, and it is necessary to consider how to choose suitable equipment in the appropriate locations. In this paper, a multi-objective optimal power flow (MOOPF) model with wind farms and FACTS devices is established. The Weibull probability density function is used to establish the wind speed model, and the cost problem brought by wind power is considered. The locations and ratings of thyristor-controlled series compensators, thyristor-controlled phase shifters, and static VAR compensators are added to the system as control variables. In addition, the constraints on the prohibited operating areas of thermal power generators and the valve point effect are also considered. Coevolutionary constrained multi-objective optimization algorithm (CCMO) is an advanced technology, and this paper improves it and names it two-stage coevolutionary constrained multi-objective optimization algorithm (TSCCMO). The proposed algorithm uses the constraint violation value as an additional objective function in the sub-population environmental selection process, and integrates a neighborhood selection strategy into the mating selection process. The population evolution process is divided into two stages, in the first stage the two populations cooperate weakly, and in the second stage the two populations will have strong cooperation. TSCCMO is used to solve this complex constrained MOOPF problem, and its results are compared and analyzed with CCMO, NSGA-II-CDP, C3M, and PPS. The comprehensive performance of TSCCMO is the best among the 6 cases.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Two-stage bidirectional coevolutionary algorithm for constrained multi-objective optimization
    Zhao, Shulin
    Hao, Xingxing
    Chen, Li
    Yu, Tingfeng
    Li, Xingyu
    Liu, Wei
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 92
  • [2] Multi-objective optimal power flow with FACTS devices
    Basu, M.
    ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (02) : 903 - 910
  • [3] Multi-objective Optimal Power Flow of Power System with FACTS Devices Using PSO Algorithm
    Metweely, Khaled M.
    Morsy, Gamal. A.
    Amer, Ragab. A.
    2017 NINETEENTH INTERNATIONAL MIDDLE-EAST POWER SYSTEMS CONFERENCE (MEPCON), 2017, : 1248 - 1257
  • [4] A coevolutionary algorithm assisted by two archives for constrained multi-objective optimization problems
    Zeng, Yong
    Cheng, Yuansheng
    Liu, Jun
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 82
  • [5] An Improved Coevolutionary Algorithm for Constrained Multi-Objective Optimization Problems
    Xie, Shumin
    Zhu, Zhenjia
    Wang, Hui
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2024, 18 (01)
  • [6] A new two-stage based evolutionary algorithm for solving multi-objective optimization problems
    Wang, Yiming
    Gao, Weifeng
    Gong, Maoguo
    Li, Hong
    Xie, Jin
    INFORMATION SCIENCES, 2022, 611 : 649 - 659
  • [7] Multi-objective optimal power flow problem using constrained dynamic multitasking multi-objective optimization algorithm
    Zhu, Junhua
    Yu, Xiaobing
    Wang, Feng
    Mao, Yaqi
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 93
  • [8] Modified shuffled frog leaping algorithm for multi-objective optimal power flow with FACTS devices
    Azizipanah-Abarghooee, Rasoul
    Narimani, Mohammad Rasoul
    Bahmani-Firouzi, Bahman
    Niknam, Taher
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (02) : 681 - 692
  • [9] Multi-objective Snow Ablation Optimization Algorithm: An Elementary Vision for Security-Constrained Optimal Power Flow Problem Incorporating Wind Energy Source with FACTS Devices
    Pandya, Sundaram B.
    Kalita, Kanak
    Cep, Robert
    Jangir, Pradeep
    Chohan, Jasgurpreet Singh
    Abualigah, Laith
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [10] Multi-objective Snow Ablation Optimization Algorithm: An Elementary Vision for Security-Constrained Optimal Power Flow Problem Incorporating Wind Energy Source with FACTS Devices
    Sundaram B. Pandya
    Kanak Kalita
    Robert Čep
    Pradeep Jangir
    Jasgurpreet Singh Chohan
    Laith Abualigah
    International Journal of Computational Intelligence Systems, 17