Multi-Agent Reinforcement Learning for Dynamic Topology Optimization of Mesh Wireless Networks

被引:0
|
作者
Sun, Wei [1 ,2 ]
Lv, Qiushuo [1 ,2 ]
Xiao, Yang [3 ]
Liu, Zhi [4 ]
Tang, Qingwei [1 ,2 ]
Li, Qiyue [1 ,2 ]
Mu, Daoming [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Elect & Automat Engn, Hefei 230009, Anhui, Peoples R China
[2] Anhui Engn Technol Res Ctr Ind Automat, Hefei 230009, Peoples R China
[3] Univ Alabama, Dept Comp Sci, Tuscaloosa, AL 35487 USA
[4] Univ Electrocommun, Dept Comp & Network Engn, Tokyo 1828585, Japan
基金
中国国家自然科学基金;
关键词
Delays; Trajectory; Topology; Network topology; Vectors; Wireless networks; Logic gates; Actor-critic; mesh wireless network; reinforcement learning; topology optimization; ad hoc wireless network; IEEE-802.11; SCHEME;
D O I
10.1109/TWC.2024.3372694
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In Mesh Wireless Networks (MWNs), the network coverage is extended by connecting Access Points (APs) in a mesh topology, where transmitting frames by multi-hop routing has to sustain the performances, such as end-to-end (E2E) delay and channel efficiency. Several recent studies have focused on minimizing E2E delay, but these methods are unable to adapt to the dynamic nature of MWNs. Meanwhile, reinforcement-learning-based methods offer better adaptability to dynamics but suffer from the problem of high-dimensional action spaces, leading to slower convergence. In this paper, we propose a multi-agent actor-critic reinforcement learning (MACRL) algorithm to optimize multiple objectives, specifically the minimization of E2E delay and the enhancement of channel efficiency. First, to reduce the action space and speed up the convergence in the dynamical optimization process, a centralized-critic-distributed-actor scheme is proposed. Then, a multi-objective reward balancing method is designed to dynamically balance the MWNs' performances between the E2E delay and the channel efficiency. Finally, the trained MACRL algorithm is deployed in the QaulNet simulator to verify its effectiveness.
引用
收藏
页码:10501 / 10513
页数:13
相关论文
共 50 条
  • [41] Learning without Gradients: Multi-Agent Reinforcement Learning approach to optimization
    Morcos, Amir
    Man, Hong
    West, Aaron
    Maguire, Brian
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN DEFENSE APPLICATIONS IV, 2022, 12276
  • [42] Dynamic Safe Interruptibility for Decentralized Multi-Agent Reinforcement Learning
    El Mhamdi, El Mandi
    Guerraoui, Rachid
    Hendrikx, Hadrien
    Maurer, Alexandre
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [43] A multi-agent reinforcement learning approach to dynamic service composition
    Wang, Hongbing
    Wang, Xiaojun
    Hu, Xingguo
    Zhang, Xingzhi
    Gu, Mingzhu
    INFORMATION SCIENCES, 2016, 363 : 96 - 119
  • [44] Transform networks for cooperative multi-agent deep reinforcement learning
    Hongbin Wang
    Xiaodong Xie
    Lianke Zhou
    Applied Intelligence, 2023, 53 : 9261 - 9269
  • [45] Safe Multi-Agent Reinforcement Learning via Dynamic Shielding
    Qiu, Yunbo
    Jin, Yue
    Yu, Lebin
    Wang, Jian
    Zhang, Xudong
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 1254 - 1257
  • [46] Transform networks for cooperative multi-agent deep reinforcement learning
    Wang, Hongbin
    Xie, Xiaodong
    Zhou, Lianke
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9261 - 9269
  • [47] Multi-Agent Reinforcement Learning for Spectrum Sharing in Vehicular Networks
    Liang, Le
    Ye, Hao
    Li, Geoffrey Ye
    2019 IEEE 20TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC 2019), 2019,
  • [48] Multi-agent reinforcement learning algorithm based on neural networks
    Tang, Lianggui
    Yang, Hu
    An, Bo
    Cheng, Daijie
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 1569 - 1574
  • [49] A Survey on Multi-Agent Reinforcement Learning Methods for Vehicular Networks
    Althamary, Ibrahim
    Huang, Chih-Wei
    Lin, Phone
    2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 1154 - 1159
  • [50] Topology optimization for backbone wireless mesh networks
    Malekesmaeili, Mani
    Shiva, Mohsen
    Soltan, Mehdi
    CNSR 2007: PROCEEDINGS OF THE FIFTH ANNUAL CONFERENCE ON COMMUNICATION NETWORKS AND SERVICES RESEARCH, 2007, : 221 - +