High-Risk Clinical Target Volume Auto-Contouring on MRI for Cervical Cancer Brachytherapy Using 3D U-Net Transfer Learning

被引:0
|
作者
Barrett, Fletcher
Quirk, Sarah
Souza, Roberto
Stenhouse, Kailyn
Martell, Kevin
Roumeliotis, Michael
McGeachy, Philip
机构
[1] Univ Calgary, Calgary, AB, Canada
[2] Brigham & Womens Hosp, Boston, MA 02115 USA
[3] Johns Hopkins Univ, Baltimore, MD 21218 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
引用
收藏
页码:5799 / 5799
页数:1
相关论文
共 50 条
  • [31] Brain Tumor Segmentation Using Dual-Path Attention U-Net in 3D MRI Images
    Jun, Wen
    Xu, Haoxiang
    Wang, Zhang
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 183 - 193
  • [32] Automatic multi-modality segmentation of gross tumor volume for head and neck cancer radiotherapy using 3D U-Net
    Guo, Zhe
    Guo, Ning
    Gong, Kuang
    Li, Quanzheng
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [33] 3D PLANNING IN HDR BRACHYTHERAPY OF CERVICAL CANCER: ANALYSIS OF DOSE VOLUME HISTOGRAMS AND CLINICAL CORRELATIONS
    Colombo, A.
    Palmieri, L.
    Frigerio, C.
    Vola, A.
    Rancati, T.
    Sangalli, G.
    Declich, F.
    RADIOTHERAPY AND ONCOLOGY, 2009, 91 : S33 - S33
  • [34] GAIR-U-Net: 3D guided attention inception residual u-net for brain tumor segmentation using multimodal MRI images
    Rutoh, Evans Kipkoech
    Guang, Qin Zhi
    Bahadar, Noor
    Raza, Rehan
    Hanif, Muhammad Shehzad
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (06)
  • [35] Auto-segmentation of thoracic organs in CT scans of breast cancer patients using a 3D U-net cascaded into 2D patchGANs
    Colbert, Zachery Morton
    Ramachandran, Prabhakar
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2023, 9 (05)
  • [36] Recommendations for high-risk clinical target volume definition with computed tomography for three-dimensional image-guided brachytherapy in cervical cancer patients
    Ohno, Tatsuya
    Wakatsuki, Masaru
    Toita, Takafumi
    Kaneyasu, Yuko
    Yoshida, Ken
    Kato, Shingo
    Ii, Noriko
    Tokumaru, Sunao
    Ikushima, Hitoshi
    Uno, Takashi
    Noda, Shin-ei
    Kazumoto, Tomoko
    Harima, Yoko
    JOURNAL OF RADIATION RESEARCH, 2017, 58 (03) : 341 - 350
  • [37] 3D U-Net for automated detection of multiple sclerosis lesions: utility of transfer learning from other pathologies
    Wahlig, Stephen G.
    Nedelec, Pierre
    Weiss, David A.
    Rudie, Jeffrey D.
    Sugrue, Leo P.
    Rauschecker, Andreas M.
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [38] Detection of pulmonary nodules based on a multiscale feature 3D U-Net convolutional neural network of transfer learning
    Tang, Siyuan
    Yang, Min
    Bai, Jinniu
    PLOS ONE, 2020, 15 (08):
  • [39] Comparative Analysis of Image Processing Techniques for Enhanced MRI Image Quality: 3D Reconstruction and Segmentation Using 3D U-Net Architecture
    Lim, Chee Chin
    Ling, Apple Ho Wei
    Chong, Yen Fook
    Mashor, Mohd Yusoff
    Alshantti, Khalilalrahman
    Aziz, Mohd Ezane
    DIAGNOSTICS, 2023, 13 (14)
  • [40] MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks
    Tie, Juhong
    Peng, Hui
    Zhou, Jiliu
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (02): : 427 - 445