Janus MoSH/WSi2N4 van der Waals Heterostructure: Two-Dimensional Metal/Semiconductor Contact

被引:1
|
作者
Wang, Yongdan [1 ,2 ]
Zhu, Xiangjiu [1 ,3 ]
Zhang, Hengshuo [1 ]
He, Shitong [1 ]
Liu, Ying [1 ]
Zhao, Wenshi [1 ]
Liu, Huilian [1 ]
Qu, Xin [1 ]
机构
[1] Jilin Normal Univ, Key Lab Funct Mat Phys & Chem, Minist Educ, Changchun 130103, Peoples R China
[2] Jilin Normal Univ, Sch Foreign Languages, Siping 136000, Peoples R China
[3] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
来源
MOLECULES | 2024年 / 29卷 / 15期
基金
中国国家自然科学基金;
关键词
two-dimensional heterostructures; first-principles calculations; electronic properties; electrical contact; OPTOELECTRONICS; CHALLENGES; GRAPHENE;
D O I
10.3390/molecules29153554
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Constructing heterostructures from already synthesized two-dimensional materials is of significant importance. We performed a first-principles study to investigate the electronic properties and interfacial characteristics of Janus MoSH/WSi2N4 van der Waals heterostructure (vdWH) contacts. We demonstrate that the p-type Schottky formed by MoSH/WSi2N4 and MoHS/WSi2N4 has extremely low Schottky barrier heights (SBHs). Due to its excellent charge injection efficiency, Janus MoSH may be regarded as an effective metal contact for WSi2N4 semiconductors. Furthermore, the interfacial characteristics and electronic structure of Janus MoSH/WSi2N4 vdWHs can not only reduce/eliminate SBH, but also forms the transition from p-ShC to n-ShC type and from Schottky contact (ShC) to Ohmic contact (OhC) through the layer spacing and electric field. Our results can offer a fresh method for optoelectronic applications based on metal/semiconductor Janus MoSH/WSi2N4 vdW heterostructures, which have strong potential in optoelectronic applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Tunable electronic properties of two-dimensional C3N/antimonene van der Waals heterostructure
    Zou, Hui
    Pan, Jiangling
    Ouyang, Fangping
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (40)
  • [42] A first-principles research of two-dimensional AlN/C2N van der Waals heterostructure as photocatalyst
    He, Jing
    Wei, Xing
    Jia, Yifan
    Liu, Jian
    Tian, Ye
    Zhang, Yan
    Fan, Jibin
    Guo, Tingting
    Ni, Lei
    Duan, Li
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 132
  • [43] Two-dimensional magnetic Janus monolayers and their van der Waals heterostructures: a review on recent progress
    Jiang, Jiawei
    Mi, Wenbo
    MATERIALS HORIZONS, 2023, 10 (03) : 788 - 807
  • [44] A VSi2P4/FeCl2 van der Waals heterostructure: a two-dimensional reconfigurable magnetic diode
    Han, Jiangchao
    Feng, Yulin
    Gao, Guoying
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (33) : 19734 - 19742
  • [45] Tunable electronic and optical properties of two-dimensional ZnSe/AlAs van der Waals heterostructure
    Fang Yao
    Xiaolong Zhou
    Aihu Xiong
    Applied Physics A, 2020, 126
  • [46] A two-dimensional Sb/InS van der Waals heterostructure for electronic and optical related applications
    Zhang, J.
    Xu, C. Y.
    Guo, Z. X.
    Han, L. P.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (36) : 22000 - 22006
  • [47] Tunable electrical contact properties in two-dimensional van der Waals V2C/MoSi2N4 heterostructures
    Zhu, Xiangjiu
    Jiang, Hongxing
    Zhang, Yukai
    Wang, Dandan
    Yang, Lihua
    Fan, Lin
    Chen, Yanli
    Qu, Xin
    Liu, Yang
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (44)
  • [48] Towards two-dimensional van der Waals ferroelectrics
    Wang, Chuanshou
    You, Lu
    Cobden, David
    Wang, Junling
    NATURE MATERIALS, 2023, 22 (05) : 542 - 552
  • [49] Two-dimensional van der Waals heterostructure of indium selenide/antimonene: Efficient carrier separation
    Shen, Nai-feng
    Yang, Xiao-dong
    Wang, Xin-xin
    Wang, Guang-hou
    Wan, Jian-guo
    CHEMICAL PHYSICS LETTERS, 2019, 727 : 50 - 54
  • [50] Towards two-dimensional van der Waals ferroelectrics
    Chuanshou Wang
    Lu You
    David Cobden
    Junling Wang
    Nature Materials, 2023, 22 : 542 - 552