Inter- and Intra-Domain Potential User Preferences for Cross-Domain Recommendation

被引:1
|
作者
Liu, Jing [1 ]
Sun, Lele [1 ]
Nie, Weizhi [1 ]
Su, Yuting [1 ]
Zhang, Yongdong [2 ]
Liu, Anan [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Univ Sci & Technol China, Hefei 230052, Peoples R China
关键词
Attention mechanism; cross-domain recommendation; transfer learning; MEDIATION;
D O I
10.1109/TMM.2024.3374577
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data sparsity poses a persistent challenge in Recommender Systems (RS), driving the emergence of Cross-Domain Recommendation (CDR) as a potential remedy. However, most existing CDR methods often struggle to circumvent the transfer of domain-specific information, which are perceived as noise in the target domain. Additionally, they primarily concentrate on inter-domain information transfer, disregarding the comprehensive exploration of data within intra-domains. To address these limitations, we propose SUCCDR (Separating User features with Compound samples), a novel approach that tackles data sparsity by leveraging both cross-domain knowledge transfer and comprehensive intra-domain analysis. Specifically, to ensure the exclusion of noisy domain-specific features during the transfer process, user preferences are separated into domain-invariant and domain-specific features through three efficient constraints. Furthermore, the unobserved items are leveraged to generate compound samples that intelligently merge observed and unobserved potential user-item interaction, utilizing a simple yet efficient attention mechanism to enable a comprehensive and unbiased representation of user preferences. We evaluate the performance of SUCCDR on two real-world datasets, Douban and Amazon, and compare it with state-of-the-art single-domain and cross-domain recommendation methods. The experimental results demonstrate that SUCCDR outperforms existing approaches, highlighting its ability to effectively alleviate data sparsity problem.
引用
收藏
页码:8014 / 8025
页数:12
相关论文
共 50 条
  • [31] Deep Cross-Domain Fashion Recommendation
    Jaradat, Shatha
    PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), 2017, : 407 - 410
  • [32] Explainable Cross-Domain Collaborator Recommendation
    Hu, Zhenyu
    Zhou, Jingya
    Zhang, Congcong
    Shi, Yingdan
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 3224 - 3229
  • [33] Neural Attentive Cross-Domain Recommendation
    Rafailidis, Dimitrios
    Crestani, Fabio
    PROCEEDINGS OF THE 2019 ACM SIGIR INTERNATIONAL CONFERENCE ON THEORY OF INFORMATION RETRIEVAL (ICTIR'19), 2019, : 164 - 171
  • [34] On the Use of Cross-Domain User Preferences and Personality Traits in Collaborative Filtering
    Fernandez-Tobias, Ignacio
    Cantador, Ivan
    USER MODELING, ADAPTATION AND PERSONALIZATION, 2015, 9146 : 343 - 349
  • [35] Unsupervised Intra-Domain Adaptation for Recommendation via Uncertainty Minimization
    Chen, Chenghao
    Xiao, Jie
    Liu, Jin
    Zhang, Jie
    Jia, Jia
    Hu, Ning
    2023 IEEE 39TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS, ICDEW, 2023, : 79 - 86
  • [36] A Graph Neural Network for Cross-domain Recommendation Based on Transfer and Inter-domain Contrastive Learning
    Mu, Caihong
    Ying, Jiahui
    Fang, Yunfei
    Liu, Yi
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2023, 2023, 14119 : 226 - 234
  • [37] Domain-Oriented Knowledge Transfer for Cross-Domain Recommendation
    Zhao, Guoshuai
    Zhang, Xiaolong
    Tang, Hao
    Shen, Jialie
    Qian, Xueming
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9539 - 9550
  • [38] Learning Domain Semantics and Cross-Domain Correlations for Paper Recommendation
    Xie, Yi
    Sun, Yuqing
    Bertino, Elisa
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 706 - 715
  • [39] Domain-Invariant Task Optimization for Cross-domain Recommendation
    Liu, Dou
    Hao, Qingbo
    Xiao, Yingyuan
    Zheng, Wenguang
    Wang, Jinsong
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT III, 2024, 14449 : 488 - 499
  • [40] Cross-Domain Recommendation Via User-Clustering and Multidimensional Information Fusion
    Nie, Jie
    Zhao, Zian
    Huang, Lei
    Nie, Weizhi
    Wei, Zhiqiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 868 - 880