Cross-Linked Composite Solid Polymer Electrolyte Doped with Li6.4La3Zr1.4Ta0.6O12 for High Voltage Lithium Metal Batteries

被引:0
|
作者
Meda, Lamartine [1 ]
Masafwa, Kutemwa [1 ]
Crockem, Ayssia N. [1 ]
Williams, Jere A. [1 ]
Beamon, Nila A. [1 ]
Adams, Jada I. [1 ]
Tunis, Jeremiah V. [1 ]
Yang, Lingyu [2 ]
Schaefer, Jennifer L. [2 ]
Wu, James J. [3 ]
机构
[1] Xavier Univ Louisiana, Dept Chem, New Orleans, LA 70125 USA
[2] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
[3] NASA Glenn Res Ctr, Cleveland, OH 44135 USA
基金
美国国家科学基金会;
关键词
composite solid polymer electrolytes; solid-statebattery; solid-state electrolyte; lithium metalbattery; lithium-ion conductivity; ION-CONDUCTING MEMBRANE; CERAMIC FILLERS; STATE; STABILITY; LI7LA3ZR2O12; DYNAMICS; ANODE; TA;
D O I
10.1021/acsami.4c08181
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Composite solid polymer electrolytes (CSPEs) are safer alternatives to liquid electrolytes and excellent candidates for high-voltage solid-state batteries. However, interfacial instabilities between the electrodes and CSPEs are one of the bottlenecks in pursuing these systems. In this study, a cross-linked CSPE was synthesized based on polypropylene carbonate, polyethylene glycol methyl ether acrylate, polyethylene glycol diacrylate with additives including lithium bis(trifluoromethane)sulfonimide salt, and tantalum-doped lithium lanthanum zirconium oxide (LLZTO). Mass fractions of 10, 20, and 40% LLZTO were added to the CSPE matrix. In a symmetric cell, lithium plating and stripping revealed that the interface between the lithium metal anode and CSPE with 10% of the LLZTO (CSPE-10LLZTO) shows the most stable interface. The CSPE-10LLZTO sample demonstrated high flexibility and showed no degradation over 800 h of cycling at varying current densities. The ionic conductivity for the CSPE-10LLZTO sample at 40 degrees C was 6.4 x 10(-4) S/cm. An all-solid-state full cell was fabricated with LiNi0.5Mn0.3Co0.2O2 as the cathode, CSPE-10LLZTO as the electrolyte and separator, and Li metal as the anode, delivering approximately 140 mAh/g of capacity. Differential scanning calorimetry measurements on CSPE-xLLZTO showed high miscibility and the elimination of crystallinity. Raman spectroscopy revealed uniformity in the structure. These findings demonstrate the capability of the CSPEs to develop high-voltage solid-state lithium metal batteries.
引用
收藏
页码:44791 / 44801
页数:11
相关论文
共 50 条
  • [21] The Role of Cycle Life on the Environmental Impact of Li6.4La3Zr1.4Ta0.6O12 based Solid-State Batteries
    Smith, Lucy
    Ibn-Mohammed, Taofeeq
    Astudillo, Dolores
    Brown, Solomon
    Reaney, Ian M.
    Koh, S. C. Lenny
    ADVANCED SUSTAINABLE SYSTEMS, 2021, 5 (02)
  • [22] Silane-modified Li6.4La3Zr1.4Ta0.6O12 in thermoplastic polyurethane-based polymer electrolyte for all-solid-state lithium battery
    Yang, Tingting
    Chin, Chi-Te
    Cheng, Ching-Hsiang
    Zhao, Jinsheng
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (09) : 2509 - 2521
  • [23] Silane-modified Li6.4La3Zr1.4Ta0.6O12 in thermoplastic polyurethane-based polymer electrolyte for all-solid-state lithium battery
    Tingting Yang
    Chi-Te Chin
    Ching-Hsiang Cheng
    Jinsheng Zhao
    Journal of Solid State Electrochemistry, 2023, 27 : 2509 - 2521
  • [24] High critical current density in Li6.4La3Zr1.4Ta0.6O12 electrolyte via interfacial engineering with complex hydride
    Lv, Ying-Tong
    Zhang, Teng-Fei
    Hu, Zhao-Tong
    Xia, Guang-Lin
    Huang, Ze-Ya
    Liu, Zhen-Hua
    Que, Li-Hua
    Yuan, Cai-Ting
    Guo, Fang-Qin
    Ichikawa, Takayuki
    Yu, Xue-Bin
    RARE METALS, 2024, 43 (02) : 692 - 701
  • [25] High critical current density in Li6.4La3Zr1.4Ta0.6O12 electrolyte via interfacial engineering with complex hydride
    Ying-Tong Lv
    Teng-Fei Zhang
    Zhao-Tong Hu
    Guang-Lin Xia
    Ze-Ya Huang
    Zhen-Hua Liu
    Li-Hua Que
    Cai-Ting Yuan
    Fang-Qin Guo
    Takayuki Ichikawa
    Xue-Bin Yu
    Rare Metals, 2024, 43 : 692 - 701
  • [26] Strippable and flexible solid electrolyte membrane by coupling Li6.4La3Zr1.4Ta0.6O12 and insulating polyvinylidene fluoride for solid state lithium ion battery
    Huirong Liu
    Jianling Li
    Wei Feng
    Guimei Han
    Ionics, 2021, 27 : 3339 - 3346
  • [27] Strippable and flexible solid electrolyte membrane by coupling Li6.4La3Zr1.4Ta0.6O12 and insulating polyvinylidene fluoride for solid state lithium ion battery
    Liu, Huirong
    Li, Jianling
    Feng, Wei
    Han, Guimei
    IONICS, 2021, 27 (08) : 3339 - 3346
  • [28] Lowering the Interfacial Resistance in Li6.4La3Zr1.4Ta0.6O12| Poly(Ethylene Oxide) Composite Electrolytes
    Kuhnert, Eveline
    Ladenstein, Lukas
    Jodlbauer, Anna
    Slugovc, Christian
    Trimmel, Gregor
    Wilkening, H. Martin R.
    Rettenwander, Daniel
    CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (10):
  • [29] High critical current density in Li6.4La3Zr1.4Ta0.6O12 electrolyte via interfacial engineering with complex hydride
    Ying-Tong Lv
    Teng-Fei Zhang
    Zhao-Tong Hu
    Guang-Lin Xia
    Ze-Ya Huang
    Zhen-Hua Liu
    Li-Hua Que
    Cai-Ting Yuan
    Fang-Qin Guo
    Takayuki Ichikawa
    Xue-Bin Yu
    Rare Metals, 2024, 43 (02) : 692 - 701
  • [30] A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties
    Huang, Zeya
    Pang, Wanying
    Liang, Peng
    Jin, Zhehui
    Grundish, Nicholas
    Li, Yutao
    Wang, Chang-An
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (27) : 16425 - 16436