Enhancing the Performance of Unsupervised Machine Learning using Parallel Computing: A Comparative Analysis

被引:0
|
作者
Baligodugula, Vishnu Vardhan [1 ]
Amsaad, Fathi [1 ]
机构
[1] Wright State Univ, Dept Comp Sci, Dayton, OH 45435 USA
关键词
Fuzzy C-Means; Parallel Fuzzy C-Means; MPI; Cloud;
D O I
10.1109/ICMI60790.2024.10585759
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increasing popularity of unsupervised machine learning techniques, particularly in clustering algorithms, is evident due to their ability to efficiently generate clusters from large datasets. As data volumes continue to expand, traditional methods become less feasible, prompting the exploration of parallel computing solutions for enhanced performance. This paper assesses the efficacy of parallel computing, focusing on Fuzzy C-Means clustering. Three implementations are compared: Sequential, Parallel using MPI, and Parallel using the Cloud. The adoption of parallel computing significantly improves scalability, leading to a 50% reduction in processing time and a 30% enhancement in overall system performance.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] UNBIASED ANALYSIS OF MOUSE SOCIAL BEHAVIOUR USING UNSUPERVISED MACHINE LEARNING
    Bauer, Oscar
    Le Sourd, Anne-Marie
    Nardi, Giacomo
    Bourgeron, Thomas
    Olivo-Marin, Jean-Christophe
    Ey, Elodie
    de Chaumont, Fabrice
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 878 - 881
  • [32] Unsupervised Machine Learning Approach for Gene Expression Microarray Data Using Soft Computing Technique
    Rana, Madhurima
    Vijayeeta, Prachi
    Kar, Utsav
    Das, Madhabananda
    Mishra, B. S. P.
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND INFORMATICS (ICACNI 2015), VOL 1, 2016, 43 : 497 - 506
  • [33] Stochastic performance tuning of complex simulation applications using unsupervised machine learning
    Shadura, Oksana
    Carminati, Federico
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [34] Comparison and analysis of parallel computing performance using OpenMP and MPI
    Hua, Shen
    Yang, Zhang
    Open Automation and Control Systems Journal, 2013, 5 (01): : 38 - 44
  • [35] Enhancing PEMEC Efficiency: A synergistic approach using CFD analysis and Machine learning for performance optimization
    Wang, Yukun
    Mao, Yudong
    Yang, Kaimin
    Gao, Bo
    Liu, Jiying
    APPLIED THERMAL ENGINEERING, 2024, 255
  • [36] Computational Acceleration of Topology Optimization Using Parallel Computing and Machine Learning Methods-Analysis of Research Trends
    Maksum, Y.
    Amirli, A.
    Amangeldi, A.
    Inkarbekov, M.
    Ding, Y.
    Romagnoli, A.
    Rustamov, S.
    Akhmetov, B.
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2022, 28
  • [37] A comparative analysis of unsupervised machine-learning methods in PSG-related phenotyping
    Ghorvei, Mohammadreza
    Karhu, Tuomas
    Hietakoste, Salla
    Ferreira-Santos, Daniela
    Hrubos-Strom, Harald
    Islind, Anna Sigridur
    Biedebach, Luka
    Nikkonen, Sami
    Leppaenen, Timo
    Rusanen, Matias
    JOURNAL OF SLEEP RESEARCH, 2024,
  • [38] Enhancing nuclear data validation analysis by using machine learning
    Neudecker, D.
    Grosskopf, M.
    Herman, M.
    Haeck, W.
    Grechanuk, P.
    Vander Wiel, S.
    Rising, M. E.
    Kahler, A. C.
    Sly, N.
    Talou, P.
    NUCLEAR DATA SHEETS, 2020, 167 : 36 - 60
  • [39] Distributed unsupervised learning using the multisoft machine
    Patané, G
    Russo, M
    INFORMATION SCIENCES, 2002, 143 (1-4) : 181 - 196
  • [40] Clustering superconductors using unsupervised machine learning
    Roter, B.
    Ninkovic, N.
    Dordevic, S. V.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2022, 598