A High-Gain Millimeter-Wave Fabry-Perot Cavity Antenna With Phase Correction on a Meta-Ground Reflective Surface

被引:0
|
作者
Zhang, Jinjie [1 ]
Wong, Hang [1 ]
机构
[1] City Univ Hong Kong, State Key Lab Terahertz & Millimeter Waves, Hong Kong, Peoples R China
关键词
Fabry-Perot cavity (FPC) antenna; Fresnel zone plate (FZP) integrated partially reflective surface (PRS); gain enhancement; millimeter wave; reflective meta-surface; EBG RESONATOR ANTENNAS; WIDE-BAND;
D O I
10.1109/TAP.2024.3421653
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article introduces a novel design of a high-gain millimeter-wave Fabry-Perot cavity (FPC) antenna in the Ka-band. The proposed antenna features a simple structure consisting of a one-layer planar partially reflective surface (PRS) integrating Fresnel zone plate (FZP), and a one-layer planar meta-ground reflective surface (M-GRS) integrating with a substrate-integrated waveguide (SIW)-based feeding source. We demonstrate a comprehensible approach to observing the amplitude and the phase distributions of the electric field on the FZP integrating with the PRS of the FPC. We suggest using multiple reflections of the waves between the PRS and the ground reflector of the FPC to distribute coherent electric fields on the radiating surface of the FZP such that a high-gain directive beam can be achieved in a thin-profile structure of the FPC. On the other hand, we propose the planar M-GRS to implement phase corrections similar to those for a spherical reflective surface of the FPC, thereby enhancing the bandwidth and gain of the FPC. After careful designs on the three-ring FZP integrated PRS and the M-GRS, the proposed FPC antenna yields a peak gain of 24 dBi at 27.7 GHz with 3-dB gain bandwidth ranging from 26.8 to 28.6 GHz. Its impedance bandwidth of 9.6% is from 26.8 to 29.5 GHz. The obtained result shows that this antenna has the potential for 5G wireless communications and satellite communications.
引用
收藏
页码:6187 / 6194
页数:8
相关论文
共 50 条
  • [1] Millimeter-Wave High-Gain PRGW Antenna Using a Fabry-Perot Cavity
    Mousavirazi, Z.
    Akbari, M.
    Denidni, T. A.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND NORTH AMERICAN RADIO SCIENCE MEETING, 2020, : 1365 - 1366
  • [2] Wideband and High-Gain Millimeter-Wave Antenna Based on FSS Fabry-Perot Cavity
    Attia, Hussein
    Abdelghani, M. Lamine
    Denidni, Tayeb A.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (10) : 5589 - 5594
  • [3] Wideband and High-Gain Fabry-Perot Cavity Antenna With Switched Beams for Millimeter-Wave Applications
    Guo, Qing-Yi
    Wong, Hang
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (07) : 4339 - 4347
  • [4] A Millimeter-Wave Fabry-Perot Antenna With High-Gain and Circular Polarization Operation
    Han, Bing
    Yang, Xue-xia
    Xue, Hai-gao
    PROCEEDINGS OF 2014 3RD ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP 2014), 2014, : 40 - 43
  • [5] A millimeter-wave wideband high-gain antenna based on the Fabry-Perot resonator antenna concept
    Ge, Yuehe
    Wang, Can
    Progress In Electromagnetics Research C, 2014, 50 : 103 - 111
  • [6] A Fabry-Perot Cavity Antenna for Millimeter-Wave Application
    Guo, Qing-Yi
    Wong, Hang
    2019 CROSS STRAIT QUAD-REGIONAL RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSQRWC), 2019,
  • [7] High-Gain wideband Fabry-Perot Slot Antenna with Partially Reflective Surface
    Meriche, Mohammed Amin
    Messai, Abderraouf
    Attia, Hussein
    Hammache, Boualem
    Denidni, Tayeb. A.
    2016 16TH MEDITERRANEAN MICROWAVE SYMPOSIUM (MMS), 2016,
  • [8] A High-Gain and Wideband Filtering Millimeter-Wave Fabry-Perot Cavity Antenna Enabled by High-Pass Source and Low-Pass Surface
    Guo, Qing-Yi
    Xu, Jin Xu
    He, Wenlong
    Wong, Hang
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (07) : 5684 - 5694
  • [9] Polarization Reconfigurable High-Gain Fabry-Perot Cavity Antenna
    Jeon, Yeong-Geun
    Yun, Gwang-Ro
    Kim, Jongyeong
    Kim, Dongho
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (09) : 7727 - 7734
  • [10] High Gain Fabry-Perot Cavity Antenna With Phase Shifting Surface
    Zhou, Lin
    Chen, Xing
    Duan, Xin
    2016 IEEE/ACES INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION TECHNOLOGY AND SYSTEMS (ICWITS) AND APPLIED COMPUTATIONAL ELECTROMAGNETICS (ACES), 2016,