Cooling air flow field in the primary mirror temperature control system of a solar telescope

被引:0
|
作者
Yu, Jinzhi [1 ,2 ,3 ]
Gu, Bozhong [1 ,2 ]
Jiang, Xiang [1 ,2 ]
Zhao, Te [1 ,2 ]
机构
[1] Chinese Acad Sci, Nanjing Inst Astron Opt & Technol, Nanjing 210042, Peoples R China
[2] Nanjing Inst Astron Opt & Technol, CAS Key Lab Astron Opt & Technol, Nanjing 210042, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
JOURNAL OF INSTRUMENTATION | 2024年 / 19卷 / 08期
基金
中国国家自然科学基金;
关键词
Instrument optimisation; Detector design and construction technologies and materials; Detector cooling and thermo-stabilization; DESIGN;
D O I
10.1088/1748-0221/19/08/P08031
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The temperature distribution and the difference with the ambient temperature of the primary mirror are crucial factors affecting the observational quality of the solar telescope. We designed a flow field structure of the primary mirror temperature control system based on the 2.5-meter Wide-field and High-resolution Solar Telescope(WeHoT), analyzed the flow conditions and heat transfer capacity of the overall flow field, and then carried out five stages of optimization iteration and simulation guided by the analysis results. A flow field structure for the primary mirror temperature control system with high efficiency and high uniformity is summarized. The simulation results for the final solution indicate an average surface temperature of the primary mirror at 20.064 degrees C, degrees C, with a maximum temperature difference within the reflective surface of 0.809 degrees C, degrees C, and a reduced difference with the ambient temperature of 0.411 degrees C. degrees C. Surface thermal deformation is less than 0.2 mu m, with an RMS value of 18.05 nm, achieving the ideal state. This work can provide a theoretical foundation and valuable insights for future research on the temperature control system of the primary mirror in large-aperture solar telescopes.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Metrological Control of the Spatial Positions of Elements of the Millimetron Telescope Primary Mirror
    Sychev V.V.
    Klem A.I.
    Atmospheric and Oceanic Optics, 2018, 31 (6) : 727 - 732
  • [42] The new IRSOL solar telescope control system
    Kueveler, G.
    Dao, V. D.
    Ramelli, R.
    ASTRONOMISCHE NACHRICHTEN, 2011, 332 (05) : 502 - 507
  • [43] Status of the European Solar Telescope Control System
    Quintero Nehrkorn, J.
    Merlos Garcia, F.
    Hernandez Delgado, A.
    Rodriguez Linares, N.
    Leon Gil, J.
    Nunez Cagigal, M.
    Barreto Cabrera, M.
    SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY VIII, 2024, 13101
  • [44] The new Swedish solar telescope control system
    Dettori, P
    Hosinsky, G
    ADVANCED TELESCOPE AND INSTRUMENTATION CONTROL SOFTWARE II, 2002, 4848 : 539 - 544
  • [45] The GTC primary mirror control system
    Lefort, B.
    Castro, J.
    ADVANCED SOFTWARE AND CONTROL FOR ASTRONOMY II, PTS 1 & 2, 2008, 7019
  • [46] Active control of a 30 m ring interferometric telescope primary mirror
    Dai, Yichun
    Liu, Zhong
    Jin, Zhenyu
    Xu, Jun
    Lin, Jing
    APPLIED OPTICS, 2009, 48 (04) : 664 - 671
  • [47] Thermal control analysis of a primary mirror for large-aperture telescope
    Tan, Yufeng
    Wang, Jihong
    Ren, Ge
    Xie, Zongliang
    He, Bi
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 71 (01) : 28 - 36
  • [48] Numerical Simulation of the Adaptive Control System of the Composite Primary Mirror of a Large-Size Space Telescope
    Samygina, E. K.
    Klem, A. I.
    ATMOSPHERIC AND OCEANIC OPTICS, 2019, 32 (05) : 590 - 596
  • [49] Numerical Simulation of the Adaptive Control System of the Composite Primary Mirror of a Large-Size Space Telescope
    E. K. Samygina
    A. I. Klem
    Atmospheric and Oceanic Optics, 2019, 32 : 590 - 596
  • [50] Development Status of Segmented Mirror Control System in Seimei Telescope
    Jikuya, Ichiro
    Uchida, Daichi
    Kino, Masaru
    Kurita, Mikio
    Yamada, Katsuhiko
    ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION IV, 2020, 11451