Device Scheduling for Secure Aggregation in Wireless Federated Learning

被引:0
|
作者
Yan, Na [1 ]
Wang, Kezhi [2 ]
Zhi, Kangda [1 ]
Pan, Cunhua [3 ]
Poor, H. Vincent [4 ]
Chai, Kok Keong [1 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[2] Brunel Univ London, Dept Comp Sci, Uxbridge UB8 3PH, England
[3] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 17期
关键词
Security; Privacy; Training; Protection; Internet of Things; Computational modeling; Communication system security; Branch-and-bound (BnB); device scheduling; federated learning (FL); integer nonlinear fractional programming;
D O I
10.1109/JIOT.2024.3405855
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) has been widely investigated in academic and industrial fields to resolve the issue of data isolation in the distributed Internet of Things (IoT) while maintaining privacy. However, challenges persist in ensuring adequate privacy and security during the aggregation process. In this article, we investigate device scheduling strategies that ensure the security and privacy of wireless FL. Specifically, we measure the privacy leakage of user data using differential privacy (DP) and assess the security level of the system through the mean-square error security (MSE-security). We commence by deriving the analytical results that reveal the impact of the device scheduling on privacy and security protection, as well as on the learning process. Drawing from these analytical findings, we propose three scheduling policies that can achieve secure aggregation of wireless FL under different cases of channel noise. In particular, we formulate an integer nonlinear fractional programming problem to improve the learning performance while guaranteeing privacy and security of wireless FL. We provide an insightful solution in the closed form to the optimization problem when the model has a high dimension. For the general case, we propose a secure and private aggregation (SPA) algorithm based on the branch-and-bound (BnB) method, which can obtain the optimal solution with low complexity. The effectiveness of the proposed schemes for device selection is validated through simulations.
引用
收藏
页码:28851 / 28862
页数:12
相关论文
共 50 条
  • [1] Device Scheduling with Fast Convergence for Wireless Federated Learning
    Shi, Wenqi
    Zhou, Sheng
    Niu, Zhisheng
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [2] Exploring Representativity in Device Scheduling for Wireless Federated Learning
    Chen, Zhixiong
    Yi, Wenqiang
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (01) : 720 - 735
  • [3] Device Scheduling and Update Aggregation Policies for Asynchronous Federated Learning
    Hu, Chung-Hsuan
    Chen, Zheng
    Larsson, Erik G.
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 281 - 285
  • [4] Update Aware Device Scheduling for Federated Learning at the Wireless Edge
    Amiri, Mohammad Mohammadi
    Gunduz, Deniz
    Kulkarni, Sanjeev R.
    Poor, H. Vincent
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2598 - 2603
  • [5] VERSA: Verifiable Secure Aggregation for Cross-Device Federated Learning
    Hahn, Changhee
    Kim, Hodong
    Kim, Minjae
    Hur, Junbeom
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (01) : 36 - 52
  • [6] Secure Dynamic Scheduling for Federated Learning in Underwater Wireless IoT Networks
    Yan, Lei
    Wang, Lei
    Li, Guanjun
    Shao, Jingwei
    Xia, Zhixin
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (09)
  • [7] Scheduling and Aggregation Design for Asynchronous Federated Learning Over Wireless Networks
    Hu, Chung-Hsuan
    Chen, Zheng
    Larsson, Erik G.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (04) : 874 - 886
  • [8] Comments on "VERSA: Verifiable Secure Aggregation for Cross-Device Federated Learning"
    Xu, Yanxin
    Zhang, Hua
    Zhao, Shaohua
    Zhang, Xin
    Li, Wenmin
    Gao, Fei
    Li, Kaixuan
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 4297 - 4298
  • [9] Convergence of Update Aware Device Scheduling for Federated Learning at the Wireless Edge
    Amiri, Mohammad Mohammadi
    Gunduz, Deniz
    Kulkarni, Sanjeev R.
    Poor, H. Vincent
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (06) : 3643 - 3658
  • [10] Comments on 'VERSA: Verifiable Secure Aggregation for Cross-Device Federated Learning'
    Luo F.
    Wang H.
    Yan X.
    IEEE Transactions on Dependable and Secure Computing, 2024, 21 (01) : 499 - 500