Preparation of CrCoFeNiMn High-Entropy Alloy Coatings Using Gas Atomization and Laser Cladding: An Investigation of Microstructure, Mechanical Properties, and Wear Resistance

被引:0
|
作者
Tian, Haodong [1 ]
Yu, Yuzhen [1 ]
Wang, Xi [1 ]
Chen, Fan [1 ]
Liu, He [1 ]
机构
[1] Yancheng Inst Technol, Sch Mech Engn, Yancheng 224051, Peoples R China
基金
中国国家自然科学基金;
关键词
CrCoFeNiMn HEA coating; gas-atomized; laser cladding; wear resistance; mechanical properties; STABILITY; EVOLUTION; BEHAVIOR;
D O I
10.3390/coatings14070906
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, a spherical CrCoFeNiMn high-entropy alloy (HEA) powder with uniform size was prepared using gas atomization. High-quality CrCoFeNiMn HEA coatings were then applied to a 316L stainless steel substrate using prepowdered laser cladding. The main focus of the study is on the phase structure composition and stability, microstructure evolution mechanism, mechanical properties, and wear resistance of CrCoFeNiMn HEA coatings. The results show that the CrCoFeNiMn HEA coatings prepared using gas atomization and laser melting techniques have a single FCC phase structure with a stable phase composition. The coatings had significantly higher diffraction peak intensities than the prepared HEA powders. The coating showed an evolution of columnar and equiaxed crystals, as well as twinned dislocation structures. Simultaneously, the microstructure transitions from large-angle grain boundaries to small-angle grain boundaries, resulting in a significant refinement of the grain structure. The CrCoFeNiMn HEA coating exhibits excellent mechanical properties. The microhardness of the coating increased by 66.06% when compared to the substrate, the maximum wear depth was reduced by 65.59%, and the average coefficient of friction decreased by 9.71%. These improvements are mainly attributed to the synergistic effects of grain boundary strengthening, fine grain strengthening, and twinning and dislocation strengthening within the coating.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Microstructure and high-temperature wear behavior of CoCrFeNiWx high-entropy alloy coatings fabricated by laser cladding
    Liu, Hao
    Gao, Qiang
    Dai, Jianbo
    Chen, Peijian
    Gao, Wenpeng
    Hao, Jingbin
    Yang, Haifeng
    TRIBOLOGY INTERNATIONAL, 2022, 172
  • [32] Effects of Nb content on the microstructure and properties of CoCrFeMnNiNbx high-entropy alloy coatings by laser cladding
    Feng, Meiyan
    Lin, Tianxiang
    Lian, Guofu
    Chen, Changrong
    Huang, Xu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 3835 - 3848
  • [33] Effects of Si content on the microstructure and properties of CoCrFeMnNiSix high-entropy alloy coatings by laser cladding
    Lin, Tianxiang
    Feng, Meiyan
    Lian, Guofu
    Lu, Hua
    Chen, Changrong
    Huang, Xu
    MATERIALS CHARACTERIZATION, 2024, 216
  • [34] Erosion wear resistance of laser cladding AlCr2FeCoNiNbx high-entropy alloy coatings
    Ji, X. L.
    Bao, Y. Y.
    Zhao, J. H.
    Gu, P.
    PROCEEDINGS OF ASIA INTERNATIONAL CONFERENCE ON TRIBOLOGY 2018 (ASIATRIB 2018), 2018, : 3 - 5
  • [35] Microstructure and mechanical properties of FeCoCrNiNbX high-entropy alloy coatings
    Fang, Qihong
    Chen, Yang
    Li, Jia
    Liu, Yanbin
    Liu, Yong
    PHYSICA B-CONDENSED MATTER, 2018, 550 : 112 - 116
  • [36] Effect of V addition on the microstructure and wear resistance of CoCrFeNiNb high-entropy alloy laser cladding layers
    Song, Chenxiao
    Zhao, Wei
    Bi, Jinpeng
    Li, Shuai
    Gao, Hairui
    Zhang, Hui
    Gao, Song
    Lv, Yuexia
    Rao, Weifeng
    INTERMETALLICS, 2025, 179
  • [37] Microstructure and mechanical properties of CoCrFeNiMo high-entropy alloy coatings
    Qiu, Xingwu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (03): : 5127 - 5133
  • [38] Microstructure, high temperature wear resistance and corrosion behaviour of NiCrCoNbMo x high-entropy alloy coatings on 15CrMoG alloy by laser cladding
    Zhao, Yingying
    Ma, Minyu
    Huang, Can
    Lin, Mengrui
    Tu, Jian
    Wang, Hanguang
    Zhan, Zhouyang
    Liu, Hao
    Chang, Xia
    Duan, Huming
    Zhou, Zhiming
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [39] Microstructure and Wear Resistance of High-Melting-Point AlCrFeMoNbxTiW High-Entropy Alloy Coating by Laser Cladding
    Guo, Yaxiong
    Liu, Qibin
    Zhou, Fang
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2017, 41 (12): : 1327 - 1332
  • [40] Microstructure and Properties of CoCrFeMnNiTix High-Entropy Alloy Coating by Laser Cladding
    Liu, Hao
    Gao, Qiang
    Man, Jiaxiang
    Li, Xiaojia
    Yang, Haifeng
    Hao, Jingbin
    Zhongguo Jiguang/Chinese Journal of Lasers, 2022, 49 (08):