Miniaturized optical system for high-precision mobile atomic gravimeters

被引:2
|
作者
Zhu, Haoran [1 ,2 ]
Huang, Panwei [1 ]
Gao, Bin [3 ]
Tang, Biao [1 ,3 ]
Chen, Xi [1 ]
Hong, Jiaqi [1 ,4 ]
Ang, Jin [1 ,4 ,5 ]
Zhong, Jiaqi [1 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[3] CAS Cold Atom Technol Wuhan Co Ltd, Wuhan 430206, Peoples R China
[4] Hefei Natl Lab, Hefei 230088, Peoples R China
[5] Wuhan Inst Quantum Technol, Wuhan 430206, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 15期
关键词
LASER SYSTEM; CONSTANT; GRAVITY;
D O I
10.1364/OE.528832
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Inertial sensors utilizing cold atom interferometry are advancing toward real-world applications, necessitating optical systems with superior integration and stability. We have developed a highly integrated and stable optical system for a fountain-type 85Rb atom gravimeter, utilizing dual fiber laser outputs to generate all the laser beams. The optical system design involves bonding miniaturized optical components onto quartz glass plates, significantly reducing the volume of the optical module while maintaining high spatial laser utilization efficiency. This enables the system to be integrated into a chassis with the dimension of 43 cm x 42 cm x 13 cm. Remarkably, the system maintains its functionality without the need for adjustments even after being transported over 14,000 km. It achieves a gravity measurement sensitivity of 14.5 mu Gal/Hz1/2 and a long-term stability of 0.4 mu Gal over 2560 seconds. This versatile optical system also supports various atom interferometry-based sensors, facilitating their deployment in practical settings.
引用
收藏
页码:26157 / 26166
页数:10
相关论文
共 50 条
  • [41] High-Precision Solar Tracking System
    Arturo, Minor M.
    Alejandro, Garcia P.
    WORLD CONGRESS ON ENGINEERING, WCE 2010, VOL II, 2010, : 844 - 846
  • [42] A HIGH-PRECISION OPTICAL-LEVEL GAUGE
    TSIRLIN, OV
    YUSHKIN, AA
    MEASUREMENT TECHNIQUES USSR, 1985, 28 (06): : 512 - 514
  • [43] High-precision scanner control system
    Yanagita, Y.
    Aoki, K.
    Kurii, T.
    SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES XIV, 2010, 7826
  • [44] A High-precision Binocular Measurement System
    Fu Yue-gang
    Jin Fan-hao
    COMPUTING, CONTROL AND INDUSTRIAL ENGINEERING IV, 2013, 823 : 402 - 405
  • [45] A Novel and High-Precision Optical Displacement Sensor
    Rostami, A.
    Noshad, M.
    Hedayati, H.
    Ghanbari, A.
    Janabi-Sharifi, F.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2007, 7 (04): : 311 - 316
  • [46] High-precision machining of complex optical systems
    Waibel, A.
    Germann, R.
    EPE (European Production Engineering), 1992, (02):
  • [47] HIGH-PRECISION OPTICAL-SURFACE SENSOR
    KOHNO, T
    OZAWA, N
    MIYAMOTO, K
    MUSHA, T
    APPLIED OPTICS, 1988, 27 (01): : 103 - 108
  • [48] High-precision optical interferometry and application to Be stars
    Tycner, C
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2004, 116 (825) : 1081 - 1081
  • [49] Magnetorheological finishing for high-precision optical surface
    Shi, Feng
    Dai, Yi-Fan
    Peng, Xiao-Qiang
    Song, Ci
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2009, 17 (08): : 1859 - 1864
  • [50] A HIGH-PRECISION UNDERWATER NAVIGATION SYSTEM
    PEARSON, MG
    JOURNAL OF NAVIGATION, 1982, 35 (03): : 374 - 385