Quasi-triangular, factorizable Leibniz bialgebras and relative Rota-Baxter operators

被引:0
|
作者
Bai, Chengming [1 ,2 ]
Liu, Guilai [1 ,2 ]
Sheng, Yunhe [3 ]
Tang, Rong [3 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Jilin Univ, Dept Math, Jilin 130012, Peoples R China
关键词
Quasi-triangular Leibniz bialgebra; classical Leibniz Yang-Baxter equation; factorizable Leibniz bialgebra; (relative) Rota-Baxter operator; LIE-GROUPS; INTEGRATION; ALGEBRAS; HOMOTOPY;
D O I
10.1515/forum-2023-0268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of quasi-triangular Leibniz bialgebras, which can be constructed from solutions of the classical Leibniz Yang-Baxter equation (CLYBE) whose skew-symmetric parts are invariant. In addition to triangular Leibniz bialgebras, quasi-triangular Leibniz bialgebras contain factorizable Leibniz bialgebras as another subclass, which lead to a factorization of the underlying Leibniz algebras. Relative Rota-Baxter operators with weights on Leibniz algebras are used to characterize solutions of the CLYBE whose skew-symmetric parts are invariant. On skew-symmetric quadratic Leibniz algebras, such operators correspond to Rota-Baxter type operators. Consequently, we introduce the notion of skew-symmetric quadratic Rota-Baxter Leibniz algebras, such that they give rise to triangular Leibniz bialgebras in the case of weight 0, while they are in one-to-one correspondence with factorizable Leibniz bialgebras in the case of nonzero weights.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Relative Rota-Baxter operators on Hom-Lie triple systems
    Li, Yizheng
    Wang, Dingguo
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (03) : 1163 - 1178
  • [32] {σ, τ}-Rota-Baxter Operators, Infinitesimal Hom-bialgebras and the Associative (Bi)Hom-Yang-Baxter Equation
    Liu, Ling
    Makhlouf, Abdenacer
    Menini, Claudia
    Panaite, Florin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (02): : 355 - 372
  • [33] Rota-Baxter mock-Lie bialgebras and related structures
    Laraiedh, Ismail
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (05)
  • [34] Cohomology of modified Rota-Baxter Leibniz algebra of weight λ
    Mondal, Bibhash
    Saha, Ripan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (06)
  • [35] Relative Rota-Baxter Operators on Hom-Lie-Yamaguti Algebras
    Wen TENG
    Jiulin JIN
    Fengshan LONG
    JournalofMathematicalResearchwithApplications, 2023, 43 (06) : 648 - 664
  • [36] Splitting of Operads and Rota-Baxter Operators on Operads
    Jun Pei
    Chengming Bai
    Li Guo
    Applied Categorical Structures, 2017, 25 : 505 - 538
  • [37] Cohomology and deformations of weighted Rota-Baxter operators
    Das, Apurba
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (09)
  • [38] Lie quasi-bialgebras with quasi-triangular decomposition
    Andruskiewitsch, N
    Tiraboschi, A
    JOURNAL OF LIE THEORY, 2000, 10 (02) : 383 - 397
  • [39] Rota-Baxter operators on Witt and Virasoro algebras
    Gao, Xu
    Liu, Ming
    Bai, Chengming
    Jing, Naihuan
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 108 : 1 - 20
  • [40] Splitting of Operads and Rota-Baxter Operators on Operads
    Pei, Jun
    Bai, Chengming
    Guo, Li
    APPLIED CATEGORICAL STRUCTURES, 2017, 25 (04) : 505 - 538