Quasi-triangular, factorizable Leibniz bialgebras and relative Rota-Baxter operators

被引:0
|
作者
Bai, Chengming [1 ,2 ]
Liu, Guilai [1 ,2 ]
Sheng, Yunhe [3 ]
Tang, Rong [3 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Jilin Univ, Dept Math, Jilin 130012, Peoples R China
关键词
Quasi-triangular Leibniz bialgebra; classical Leibniz Yang-Baxter equation; factorizable Leibniz bialgebra; (relative) Rota-Baxter operator; LIE-GROUPS; INTEGRATION; ALGEBRAS; HOMOTOPY;
D O I
10.1515/forum-2023-0268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of quasi-triangular Leibniz bialgebras, which can be constructed from solutions of the classical Leibniz Yang-Baxter equation (CLYBE) whose skew-symmetric parts are invariant. In addition to triangular Leibniz bialgebras, quasi-triangular Leibniz bialgebras contain factorizable Leibniz bialgebras as another subclass, which lead to a factorization of the underlying Leibniz algebras. Relative Rota-Baxter operators with weights on Leibniz algebras are used to characterize solutions of the CLYBE whose skew-symmetric parts are invariant. On skew-symmetric quadratic Leibniz algebras, such operators correspond to Rota-Baxter type operators. Consequently, we introduce the notion of skew-symmetric quadratic Rota-Baxter Leibniz algebras, such that they give rise to triangular Leibniz bialgebras in the case of weight 0, while they are in one-to-one correspondence with factorizable Leibniz bialgebras in the case of nonzero weights.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Leibniz bialgebras, relative Rota-Baxter operators, and the classical Leibniz Yang-Baxter equation
    Tang, Rong
    Sheng, Yunhe
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2022, 16 (04) : 1179 - 1211
  • [2] Quasi-triangular pre-Lie bialgebras, factorizable pre-Lie bialgebras and Rota-Baxter pre-Lie algebras
    Wang, You
    Bai, Chengming
    Liu, Jiefeng
    Sheng, Yunhe
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 199
  • [3] Factorizable Lie Bialgebras, Quadratic Rota-Baxter Lie Algebras and Rota-Baxter Lie Bialgebras
    Lang, Honglei
    Sheng, Yunhe
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 397 (02) : 763 - 791
  • [4] Deformations of relative Rota-Baxter operators on Leibniz algebras
    Tang, Rong
    Sheng, Yunhe
    Zhou, Yanqiu
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (12)
  • [5] From relative Rota-Baxter operators and relative averaging operators on Lie algebras to relative Rota-Baxter operators on Leibniz algebras: a uniform approach
    Sheng, Yunhe
    Tang, Rong
    Wagemann, Friedrich
    MATHEMATICAL RESEARCH LETTERS, 2024, 31 (05) : 1551 - 1594
  • [6] Rota-Baxter coalgebras and Rota-Baxter bialgebras
    Ma, Tianshui
    Liu, Linlin
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (05): : 968 - 979
  • [7] RELATIVE ROTA-BAXTER SYSTEMS ON LEIBNIZ ALGEBRASRELATIVE ROTA-BAXTER SYSTEMS ON LEIBNIZ ALGEBRAS
    Das, Apurba
    Guo, Shuangjian
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (02) : 303 - 325
  • [8] Quasi-triangular and factorizable antisymmetric infinitesimal bialgebras
    Sheng, Yunhe
    Wang, You
    JOURNAL OF ALGEBRA, 2023, 628 : 415 - 433
  • [9] Twisted relative Rota-Baxter operators on Leibniz conformal algebras
    Guo, Shuangjian
    Wang, Shengxiang
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (09) : 3946 - 3959
  • [10] Extended Rota-Baxter Operators on Leibniz Algebras
    Li, Yizheng
    Wang, Dingguo
    FRONTIERS OF MATHEMATICS, 2025,