Computing the Mittag-Leffler function of a matrix argument

被引:2
|
作者
Cardoso, Joao R. [1 ,2 ]
机构
[1] Polytech Inst Coimbra, Coimbra Inst Engn, Rua Pedro Nunes Quinta Nora, P-3030199 Coimbra, Portugal
[2] Univ Coimbra, Ctr Math, CMUC, Coimbra, Portugal
关键词
Mittag-Leffler function; Taylor series; Fractional calculus; Cauchy integral formula; Trapezoidal rule; SCHUR-PARLETT ALGORITHM; COMPUTATION;
D O I
10.1007/s13540-024-00326-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that the two-parameter Mittag-Leffler (ML) function plays a key role in Fractional Calculus. In this paper, we address the problem of computing this function, when its argument is a square matrix. Effective methods for solving this problem involve the computation of higher order derivatives or require the use of mixed precision arithmetic. In this paper, we provide an alternative method that is derivative-free and works entirely using IEEE standard double precision arithmetic. If certain conditions are satisfied, our method uses a Taylor series representation for the ML function; if not, it switches to a Schur-Parlett technique that will be combined with the Cauchy integral formula. A detailed discussion on the choice of a convenient contour is included. Theoretical and numerical issues regarding the performance of the proposed algorithm are discussed. A set of numerical experiments shows that our novel approach is competitive with the state-of-the-art method for IEEE double precision arithmetic, in terms of accuracy and CPU time. For matrices whose Schur decomposition has large blocks with clustered eigenvalues, our method far outperforms the other. Since our method does not require the efficient computation of higher order derivatives, it has the additional advantage of being easily extended to other matrix functions (e.g., special functions).
引用
收藏
页码:2248 / 2274
页数:27
相关论文
共 50 条
  • [31] Integral Representation of the Mittag-Leffler Function
    Saenko, V. V.
    RUSSIAN MATHEMATICS, 2022, 66 (04) : 43 - 58
  • [32] Battery Modeling with Mittag-Leffler Function
    Abdelhafiz, Shahenda M.
    Fouda, Mohammed E.
    Radwan, Ahmed G.
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [33] Comments on the properties of Mittag-Leffler function
    G. Dattoli
    K. Gorska
    A. Horzela
    S. Licciardi
    R. M. Pidatella
    The European Physical Journal Special Topics, 2017, 226 : 3427 - 3443
  • [34] On the computation of the multidimensional Mittag-Leffler function
    Ortigueira, Manuel D.
    Lopes, Antonio M.
    Tenreiro Machado, J. A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 53 : 278 - 287
  • [35] On Mittag-Leffler type function and applications
    Saigo, M
    Kilbas, AA
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (1-2) : 97 - 112
  • [36] Note on generalized Mittag-Leffler function
    Desai, Rachana
    Salehbhai, I. A.
    Shukla, A. K.
    SPRINGERPLUS, 2016, 5
  • [37] Asymptotics for a variant of the Mittag-Leffler function
    Gerhold, Stefan
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (06) : 397 - 403
  • [38] A further extension of Mittag-Leffler function
    Maja Andrić
    Ghulam Farid
    Josip Pečarić
    Fractional Calculus and Applied Analysis, 2018, 21 : 1377 - 1395
  • [39] A note on property of the Mittag-Leffler function
    Peng, Jigen
    Li, Kexue
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) : 635 - 638
  • [40] Mittag-Leffler function and fractional differential equations
    Katarzyna Górska
    Ambra Lattanzi
    Giuseppe Dattoli
    Fractional Calculus and Applied Analysis, 2018, 21 : 220 - 236