Digital Spatial Profiling Identifies Distinct Molecular Signatures of Vascular Lesions in Pulmonary Arterial Hypertension

被引:11
|
作者
Tuder, Rubin M. [1 ,2 ,3 ]
Gandjeva, Aneta [1 ,2 ,3 ]
Williams, Sarah [7 ,8 ]
Kumar, Sushil [1 ,2 ]
Kheyfets, Vitaly O. [3 ,4 ,5 ,6 ]
Hatton-Jones, Kyle Matthew [9 ]
Starr, Jacqueline R. [11 ]
Yun, Jeong [11 ]
Hong, Jason [12 ]
West, Nicholas P. [9 ,10 ]
Stenmark, Kurt R. [1 ,2 ,4 ,5 ]
机构
[1] Univ Colorado, Dept Pediat, Cardiovasc Pulm Res Labs, Sch Med, Anschutz Med Campus, Aurora, CO USA
[2] Univ Colorado, Dept Med, Sch Med, Anschutz Med Campus, Aurora, CO USA
[3] Univ Colorado, Sch Med, Program Translat Lung Res, Div Pulm & Crit Care Sci,Dept Med, Anschutz Med Campus, Aurora, CO USA
[4] Univ Colorado, Div Pediat Crit Care, Sch Med, Anschutz Med Campus, Aurora, CO USA
[5] Univ Colorado, Sch Med, Cardiovasc Pulm Res Lab, Anschutz Med Campus, Aurora, CO USA
[6] Univ Colorado, Dept Biomed Informat, Sch Med, Anschutz Med Campus, Aurora, CO USA
[7] Queensland Cyber Infrastruct Fdn, St Lucia, Qld, Australia
[8] Griffith Univ, Griffith Inst Drug Discovery, Nathan, Qld, Australia
[9] Griffith Univ, Menzies Hlth Inst, Nathan, Qld, Australia
[10] Griffith Univ, Sch Pharm & Med Sci, Nathan, Qld, Australia
[11] Brigham & Womens Hosp, Channing Div Network Med, Boston, MA USA
[12] Univ Calif Los Angeles, David Geffen Sch Med, Div Pulm & Crit Care, Dept Med, Los Angeles, CA USA
关键词
digital spatial transcriptomic profiling; pulmonary hypertension; inflammation; hypoxia; complement; PROTEIN-RECEPTOR-II; PLEXIFORM LESIONS; EXPRESSION; INFLAMMATION; PATHOLOGY; GENE; LUNG; PATHWAY; GROWTH; CELLS;
D O I
10.1164/rccm.202307-1310OC
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Rationale: Idiopathic pulmonary arterial hypertension (IPAH) is characterized by extensive pulmonary vascular remodeling caused by plexiform and obliterative lesions, media hypertrophy, inflammatory cell infiltration, and alterations of the adventitia. Objective: We sought to test the hypothesis that microscopic IPAH vascular lesions express unique molecular profiles, which collectively are different from control pulmonary arteries. Methods: We used digital spatial transcriptomics to profile the genomewide differential transcriptomic signature of key pathological lesions (plexiform, obliterative, intima+media hypertrophy, and adventitia) in IPAH lungs (n = 11) and compared these data with the intima1media hypertrophy and adventitia of control pulmonary artery (n = 5). Measurements and Main Results: We detected 8,273 transcripts in the IPAH lesions and control lung pulmonary arteries. Plexiform lesions and IPAH adventitia exhibited the greatest number of differentially expressed genes when compared with intima1media hypertrophy and obliterative lesions. Plexiform lesions in IPAH showed enrichment for 1) genes associated with transforming growth factor beta signaling and 2) mutated genes affecting the extracellular matrix and endothelial-mesenchymal transformation. Plexiform lesions and IPAH adventitia showed upregulation of genes involved in immune and IFN signaling, coagulation, and complement pathways. Cellular deconvolution indicated variability in the number of vascular and inflammatory cells between IPAH lesions, which underlies the differential transcript profiling. Conclusions: IPAH lesions express unique molecular transcript profiles enriched for pathways involving pathogenetic pathways, including genetic disease drivers, innate and acquired immunity, hypoxia sensing, and angiogenesis signaling. These data provide a rich molecular-structural framework in IPAH vascular lesions that inform novel biomarkers and therapeutic targets in this highly morbid disease.
引用
收藏
页码:329 / 342
页数:14
相关论文
共 50 条
  • [31] Profiling the role of mammalian target of rapamycin in the vascular smooth muscle metabolome in pulmonary arterial hypertension
    Kudryashova, Tatiana V.
    Goncharov, Dmitry A.
    Pena, Andressa
    Ihida-Stansbury, Kaori
    DeLisser, Horace
    Kawut, Steven M.
    Goncharova, Elena A.
    PULMONARY CIRCULATION, 2015, 5 (04) : 667 - 680
  • [32] Peripheral Vascular Dysfunction In Pulmonary Arterial Hypertension
    Choudhary, G.
    Vang, A.
    McCullough, D. J.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 191
  • [33] Systemic Vascular Function In Pulmonary Arterial Hypertension
    Chamorro, N.
    Del Pozo, R.
    Garcia-Lucio, J.
    Blanco, I.
    Lopez-Messeguer, M.
    Ribas, J.
    Rodriguez, D.
    Barbera, J. A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 191
  • [34] Emerging Concepts in the Molecular Basis of Pulmonary Arterial Hypertension Part II: Neurohormonal Signaling Contributes to the Pulmonary Vascular and Right Ventricular Pathophenotype of Pulmonary Arterial Hypertension
    Maron, Bradley A.
    Leopold, Jane A.
    CIRCULATION, 2015, 131 (23) : 2079 - 2091
  • [35] MOLECULAR PATHOGENESIS OF PULMONARY ARTERIAL HYPERTENSION
    Lee, Sang-Do
    RESPIROLOGY, 2010, 15 : 16 - 16
  • [36] Molecular pathogenesis of pulmonary arterial hypertension
    Rabinovitch, Marlene
    JOURNAL OF CLINICAL INVESTIGATION, 2008, 118 (07): : 2372 - 2379
  • [37] Molecular Pathways in Pulmonary Arterial Hypertension
    Shah, Aangi J.
    Vorla, Mounica
    Kalra, Dinesh K.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [38] Molecular pathogenesis of pulmonary arterial hypertension
    Rabinovitch, Marlene
    JOURNAL OF CLINICAL INVESTIGATION, 2012, 122 (12): : 4306 - 4313
  • [39] Molecular Rescue in Pulmonary Arterial Hypertension
    Newman, John H.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (13): : 1271 - 1272
  • [40] THE MORPHOLOGY OF CERTAIN VASCULAR LESIONS IN PULMONARY HYPERTENSION
    WAGENVOORT, CA
    JOURNAL OF PATHOLOGY AND BACTERIOLOGY, 1959, 78 (02): : 503 - &