Recent progress, challenges and future prospects of applied deep reinforcement learning : A practical perspective in path planning

被引:4
|
作者
Zhang, Ye [1 ]
Zhao, Wang [1 ]
Wang, Jingyu [1 ,2 ]
Yuan, Yuan [1 ]
机构
[1] Northwestern Polytech Univ, Sch Astronaut, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Artificial Intelligence OPt & Elect iOPEN, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; Path planning; Training efficiency; Combination optimization; HINDSIGHT EXPERIENCE REPLAY; COLLISION-AVOIDANCE; DYNAMIC ENVIRONMENTS; GENETIC ALGORITHM; NAVIGATION; OBSTACLES; AGENTS;
D O I
10.1016/j.neucom.2024.128423
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Path planning is one of the most crucial elements in the field of robotics, such as autonomous driving, minimally invasive surgery and logistics distribution. This review begins by summarizing the limitations of conventional path planning methods and recent work on DRL-based path planning methods. Subsequently, the paper systematically reviews the construction of key elements of DRL methods in recent work, with the aim of assisting readers in comprehending the foundation of DRL research, along with the underlying logic and considerations from a practical perspective. Facing issues of sparse rewards and the exploration- exploitation balance during the practical training process, the paper reviews enhancement methods for training efficiency and optimization results in DRL path planning. In the end, the paper summarizes the current research limitations and challenges in practical path planning applications, followed by future research directions.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Multi-objective path planning based on deep reinforcement learning
    Xu, Jian
    Huang, Fei
    Cui, Yunfei
    Du, Xue
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3273 - 3279
  • [32] Improved Robot Path Planning Method Based on Deep Reinforcement Learning
    Han, Huiyan
    Wang, Jiaqi
    Kuang, Liqun
    Han, Xie
    Xue, Hongxin
    SENSORS, 2023, 23 (12)
  • [33] Dynamic Scene Path Planning of UAVs Based on Deep Reinforcement Learning
    Tang, Jin
    Liang, Yangang
    Li, Kebo
    DRONES, 2024, 8 (02)
  • [34] AUV path planning based on improved IFDS and deep reinforcement learning
    Fan, Yiqun
    Li, Hongna
    Xie, Jiaqi
    Zhou, Yunfu
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2024, 21 (06):
  • [35] Towards a Deep Reinforcement Learning Solution to the Coverage Path Planning Problem
    Abdelaziz, Shaza I. Kaoud
    Noureldin, Aboelmagd
    Givigi, Sidney
    2024 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE 2024, 2024, : 152 - 153
  • [36] A Review of Deep Reinforcement Learning Algorithms for Mobile Robot Path Planning
    Singh, Ramanjeet
    Ren, Jing
    Lin, Xianke
    VEHICLES, 2023, 5 (04): : 1423 - 1451
  • [37] Path planning of robotic arm based on deep reinforcement learning algorithm
    Al-Gabalawy M.
    Advanced Control for Applications: Engineering and Industrial Systems, 2022, 4 (01):
  • [38] Ship path planning based on Deep Reinforcement Learning and weather forecast
    Artusi, Eva
    2021 22ND IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2021), 2021, : 258 - 260
  • [39] Robot Patrol Path Planning Based on Combined Deep Reinforcement Learning
    Li, Wenqi
    Chen, Dehua
    Le, Jiajin
    2018 IEEE INT CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, UBIQUITOUS COMPUTING & COMMUNICATIONS, BIG DATA & CLOUD COMPUTING, SOCIAL COMPUTING & NETWORKING, SUSTAINABLE COMPUTING & COMMUNICATIONS, 2018, : 659 - 666
  • [40] Distributed Learning in Wireless Networks: Recent Progress and Future Challenges
    Chen, Mingzhe
    Gunduz, Deniz
    Huang, Kaibin
    Saad, Walid
    Bennis, Mehdi
    Feljan, Aneta Vulgarakis
    Poor, H. Vincent
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3579 - 3605