Crop water stress detection based on UAV remote sensing systems

被引:6
|
作者
Dong, Hao [1 ,2 ,3 ]
Dong, Jiahui [1 ,2 ,3 ]
Sun, Shikun [1 ,2 ,3 ]
Bai, Ting [1 ,2 ,3 ]
Zhao, Dongmei [1 ,2 ,3 ]
Yin, Yali [1 ,2 ,3 ]
Shen, Xin [4 ]
Wang, Yakun [1 ,2 ,3 ]
Zhang, Zhitao [1 ,2 ,3 ]
Wang, Yubao [1 ,2 ,3 ]
机构
[1] Northwest A&F Univ, Key Lab Agr Soil & Water Engn Arid & Semiarid Area, Minist Educ, Yangling 712100, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Inst Water Saving Agr Arid Reg China, Yangling 712100, Shaanxi, Peoples R China
[3] Natl Engn Res Ctr Water Saving Irrigat Yangling, Yangling 712100, Shaanxi, Peoples R China
[4] Natl Agrotech Extens & Serv Ctr, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
UAV; CWSI; RGB; Optical; Multi-spectral; Hyper-spectral; DRY-MATTER TRANSLOCATION; UNMANNED AERIAL VEHICLE; PHOTOSYNTHETIC CHARACTERISTICS; WINTER-WHEAT; AREA INDEX; CHLOROPHYLL FLUORESCENCE; CANOPY TEMPERATURE; DROUGHT STRESS; USE EFFICIENCY; EVAPOTRANSPIRATION;
D O I
10.1016/j.agwat.2024.109059
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Agricultural water accounts for more than 70 % of the total global water usage, and the scarcity of global freshwater resources will largely limit global agricultural production. Precision irrigation is the key to improving water efficiency and achieving sustainable agriculture. Accurate and rapid access to crop water information is an essential prerequisite for precise irrigation decisions. Traditional moisture detection methods based on soil moisture and crop physiological parameters are faced with the problems of variable field conditions, low efficiency and lack of spatial information, which can be extremely limited in practical applications. By contrast, unmanned aerial vehicle (UAV) remote sensing has the advantages of low cost, small size, flexible data acquisition time, and easy acquisition of high-resolution image data. Therefore, UAV remote sensing has become an easy and efficient method for crop water information monitoring. This study systematically introduces the principles, methods and applications of crop water stress analysis using the UAV technology. First, the mechanism of crop water stress analysed by UAV is elaborated, focusing on the relationship between canopy temperature, evapotranspiration, sun-induced chlorophyll fluorescence (SIF) and crop water stress. Next, various UAV imaging technologies for crop water stress monitoring are presented, including optical sensing systems, red, green and blue (RGB) images, multi-spectral sensing systems, and hyper-spectral sensing systems. Subsequently, the application of machine learning algorithms in the field of UAV monitoring of crop water information is outlined, demonstrating their potential for data processing and analysis. Finally, new directions and challenges in UAV-based crop water information acquisition and processing are synthesised and discussed, with special emphasis on the prospects of data assimilation algorithms and non-stomatal restriction in monitoring crop water information in the future. This study provides a comprehensive comparison and assessment of the mechanisms, technologies and challenges of UAV-based crop water information monitoring, providing insights and references for researchers in related fields.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] A Review of Crop Water Stress Assessment Using Remote Sensing
    Ahmad, Uzair
    Alvino, Arturo
    Marino, Stefano
    REMOTE SENSING, 2021, 13 (20)
  • [12] Sensing crop reflectance for water stress detection in greenhouses
    Katsoulas, N.
    Elvanidi, A.
    Bartzanas, T.
    Ferentinos, K. P.
    Kittas, C.
    INTERNATIONAL SYMPOSIUM ON SENSING PLANT WATER STATUS - METHODS AND APPLICATIONS IN HORTICULTURAL SCIENCE, 2018, 1197 : 117 - 125
  • [13] Object-oriented crop classification based on UAV remote sensing imagery
    ZHANG Lan
    ZHANG Yanhong
    Global Geology, 2022, 25 (01) : 60 - 68
  • [14] Intelligent agriculture: deep learning in UAV-based remote sensing imagery for crop diseases and pests detection
    Zhu, Hongyan
    Lin, Chengzhi
    Liu, Gengqi
    Wang, Dani
    Qin, Shuai
    Li, Anjie
    Xu, Jun-Li
    He, Yong
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [15] UAV BASED REMOTE SENSING FOR TASSEL DETECTION AND GROWTH STAGE ESTIMATION OF MAIZE CROP USING MULTISPECTRAL IMAGES
    Kumar, Ajay
    Taparia, Mahesh
    Rajalakshmi, P.
    Guo, Wei
    Naik, Balaji B.
    Marathi, Balram
    Desai, U. B.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1588 - 1591
  • [16] Water Turbidity Retrieval Based on UAV Hyperspectral Remote Sensing
    Cui, Mengying
    Sun, Yonghua
    Huang, Chen
    Li, Mengjun
    WATER, 2022, 14 (01)
  • [17] REQUIREMENTS ON SPECTRAL RESOLUTION OF REMOTE SENSING DATA FOR CROP STRESS DETECTION
    Franke, J.
    Mewes, T.
    Menz, G.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 184 - 187
  • [18] A Crop water stress index based on Remote Sensing methods for monitoring drought in an Arid area
    Liu, Suyi
    Pan, Xin
    Yang, Yingbao
    Yuan, Jie
    Yang, Zi
    Wang, Zhanchuan
    Xie, Wenying
    Song, Hao
    REMOTE SENSING LETTERS, 2023, 14 (08) : 890 - 900
  • [19] Estimation of crop water stress index and leaf area index based on remote sensing data
    Cetin, Mahmut
    Alsenjar, Omar
    Aksu, Hakan
    Golpinar, Muhammet Said
    Akgul, Mehmet Ali
    WATER SUPPLY, 2023, 23 (03) : 1390 - 1404
  • [20] Crop identification using UAV remote sensing image segmentation
    Shen Xiaohai
    Teng Yan
    Fu Han
    Wan Zhida
    Zhang Xuewu
    SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427