TCGNN: Text-Clustering Graph Neural Networks for Fake News Detection on Social Media

被引:1
|
作者
Li, Pei-Cheng [1 ]
Li, Cheng-Te [2 ]
机构
[1] Natl Taiwan Univ, Taipei, Taiwan
[2] Natl Cheng Kung Univ, Tainan, Taiwan
关键词
Fake News Detection; Rumor Detection; Graph Neural Networks; Text Clustering; Social Media;
D O I
10.1007/978-981-97-2266-2_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the realm of fake news detection, conventional Graph Neural Network (GNN) methods are often hamstrung by their dependency on non-textual auxiliary data for graph construction, such as user interactions and content spread patterns, which are not always accessible. Furthermore, these methods typically fall short in capturing the granular, intricate correlations within text, thus weakening their effectiveness. In this work, we propose Text-Clustering Graph Neural Network (TCGNN), a novel approach that circumvents these limitations by solely utilizing text to construct its detection framework. TCGNN innovatively employs text clustering to extract representative words and harnesses multiple clustering dimensions to encapsulate a multi-faceted representation of textual semantics. This multi-layered approach not only delves into the fine-grained correlations within text but also bridges them to a broader context, significantly enriching the model's interpretative fidelity. Our rigorous experiments on a suite of benchmark datasets have underscored TCGNN's proficiency, outperforming extant GNN-based models. This validates our premise that an adept synthesis of text clustering within a GNN architecture can profoundly enhance the detection of fake news, steering the course towards a more reliable and textually-aware future in information verification.
引用
收藏
页码:134 / 146
页数:13
相关论文
共 50 条
  • [21] Fake News Detection on Social Networks: A Survey
    Shen, Yanping
    Liu, Qingjie
    Guo, Na
    Yuan, Jing
    Yang, Yanqing
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [22] Modelling Social Context for Fake News Detection: A Graph Neural Network Based Approach
    Saikia, Pallabi
    Gundale, Kshitij
    Jain, Ankit
    Jadeja, Dev
    Pate, Harvi
    Roy, Mohendra
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [23] ?Fake News? in Social Networks: Media Practices of Students
    Barinov, Dmitry N.
    Nesina, Victoria V.
    THEORETICAL AND PRACTICAL ISSUES OF JOURNALISM, 2023, 12 (01): : 5 - 23
  • [24] Topic Clustering for Social Media Texts with Heterogeneous Graph Neural Networks
    Xiaodong F.
    Kangxin H.
    Data Analysis and Knowledge Discovery, 2022, 6 (10) : 9 - 19
  • [25] Temporally evolving graph neural network for fake news detection
    Song, Chenguang
    Shu, Kai
    Wu, Bin
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (06)
  • [26] Dynamic graph neural network for fake news detection q
    Song, Chenguang
    Teng, Yiyang
    Zhu, Yangfu
    Wei, Siqi
    Wu, Bin
    NEUROCOMPUTING, 2022, 505 : 362 - 374
  • [27] Fake News Detection on Social Media: A Systematic Survey
    Elhadad, Mohamed K.
    Li, Kin Fun
    Gebali, Fayez
    2019 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2019,
  • [28] Fake News Detection in Social Media using Blockchain
    Paul, Shovon
    Joy, Jubair Islam
    Sarker, Shaila
    Abdullah-Al-Haris Shakib
    Ahmed, Sharif
    Das, Amit Kumar
    2019 7TH INTERNATIONAL CONFERENCE ON SMART COMPUTING & COMMUNICATIONS (ICSCC), 2019, : 250 - 254
  • [29] Explainable Detection of Fake News and Cyberbullying on Social Media
    Li, Cheng-Te
    WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, 2020, : 398 - 398
  • [30] Fake News Detection Techniques on Social Media: A Survey
    Ali, Ihsan
    Bin Ayub, Mohamad Nizam
    Shivakumara, Palaiahnakote
    Noor, Nurul Fazmidar Binti Mohd
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022