Ionic Polymers with Phenolic Hydroxyl Groups as Hydrogen Bond Donors Toward Enhanced Catalytic Performance for CO2 Conversion

被引:0
|
作者
Zhu, Lihua [1 ,2 ]
Huang, Ziying [1 ,2 ]
Ge, Tianhao [1 ]
Jiang, Chaoqi [1 ]
Zhong, Wei [1 ]
Kannan, Palanisamy [1 ]
机构
[1] Jiaxing Univ, Coll Biol Chem Sci & Engn, Jiaxing 314001, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Coll Chem & Mat Sci, Jinhua 321004, Zhejiang, Peoples R China
来源
CHEMISTRYSELECT | 2024年 / 9卷 / 30期
关键词
ionic polymers; hydrogen bond donors; phenolic hydroxyl; CO2; conversion; cyclic carbonates; CARBON-DIOXIDE; POLY(IONIC LIQUID)S; EPOXIDES; CYCLOADDITION; REACTIVITY; FIXATION;
D O I
10.1002/slct.202402251
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, imidazolium-based multifunctional ionic polymer (IP 1-IP 3) series, co-incorporated with phenolic hydroxyl groups as hydrogen bond donors (HBDs) and Cl- as nucleophiles, are synthesized by a facile quaternization method. The physicochemical characterizations of these IPs are systematically examined by using FTIR, XPS, BET, TGA, CO2-TPD, SEM with elemental mapping and TEM methods. Their catalytic activities are evaluated toward the conversion of carbon dioxide (CO2) and epoxides into cyclic carbonates under solvent- and additive-free environments. Apart from the synergy effect between HBDs and Cl-, it is found that the types of the spacer linking the two imidazole units in the diimidazole precursors (L-1-L-3) also play an important role in the catalytic activity. And IP 2, with a pyridine spacer as a Lewis base site, exhibits the best catalytic performance under solvent-free mild conditions i. e., atmospheric pressure CO2, 80 degrees C, and 5 h. Notably, the catalyst demonstrates a good substrate applicability. Furthermore, IP 2 exhibited good reusability, stability, and it can be recycled for ten successive runs with stable and potential catalytic activity. This study provides an alternative route to construct IPs with efficient activity for CO2 catalytic conversion and fixation under mild-conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Performance analysis of hybrid catalytic conversion of CO2 to DiMethyl ether
    Godini, Hamid Reza
    Kumar, Sanjay Ramesh
    Tadikamalla, Nithin
    Gallucci, Fausto
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (21) : 11341 - 11358
  • [32] Central Doping of a Foreign Atom into the Silver Cluster for Catalytic Conversion of CO2 toward C-C Bond Formation
    Liu, Yuanyuan
    Chai, Xiaoqi
    Cai, Xiao
    Chen, Mingyang
    Jin, Rongchao
    Ding, Weiping
    Zhu, Yan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (31) : 9775 - 9779
  • [33] Emerging Ionic Polymers for CO2 Conversion to Cyclic Carbonates: An Overview of Recent Developments
    Jamil, Rabic
    Tome, Liliana C.
    Mecerreyes, David
    Silvester, Debbie S.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2021, 74 (11) : 767 - 777
  • [34] A tunable ionic covalent organic framework platform for efficient CO2 catalytic conversion
    Li, Ting
    Xiong, Ji
    Chen, Minghui
    Shi, Quan
    Li, Xiangyu
    Jiang, Yu
    Feng, Yaqing
    Zhang, Bao
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2024, 18 (01)
  • [35] A tunable ionic covalent organic framework platform for efficient CO2 catalytic conversion
    Ting Li
    Ji Xiong
    Minghui Chen
    Quan Shi
    Xiangyu Li
    Yu Jiang
    Yaqing Feng
    Bao Zhang
    Frontiers of Chemical Science and Engineering, 2024, 18
  • [36] High-Surface-Area Metalloporphyrin-Based Porous Ionic Polymers by the Direct Condensation Strategy for Enhanced CO2 Capture and Catalytic Conversion into Cyclic Carbonates
    Liu, Xiangying
    Yang, Yiying
    Chen, Min
    Xu, Wei
    Chen, Kechi
    Luo, Rongchang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (01) : 1085 - 1096
  • [37] Synthesis of Bifunctional Porphyrin Polymers for Catalytic Conversion of Dilute CO2 to Cyclic Carbonates
    Liu, Lina
    Jayakumar, Sanjeevi
    Chen, Jian
    Tao, Lin
    Li, He
    Yang, Qihua
    Li, Can
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (25) : 29522 - 29531
  • [38] Post-crosslinking knitting strategy for triazine-functionalized ionic hypercrosslinked polymers: Enhanced CO2 adsorption and conversion
    Yuan, Yuxin
    Liao, Quanlan
    Liu, Fei
    Pan, Hongyan
    Zhao, Tianxiang
    Tao, Duan-Jian
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [39] Synergistic catalysis of hypercrosslinked ionic polymers with multi-ionic sites for conversion of CO2 to cyclic carbonates
    Liao, Xu
    Wang, Zeyu
    Kong, Lingzheng
    Gao, Xilin
    He, Jiao
    Huang, Dongha
    Lin, Jinqing
    MOLECULAR CATALYSIS, 2023, 535
  • [40] Pendant Hydrogen-Bond Donors in Cobalt Catalysts Independently Enhance CO2 Reduction
    Chapovetsky, Alon
    Welborn, Matthew
    Luna, John M.
    Haiges, Ralf
    Miller, Thomas F., III
    Marinescu, Smaranda C.
    ACS CENTRAL SCIENCE, 2018, 4 (03) : 397 - 404