Dynamic Pricing for Vehicle Dispatching in Mobility-as-a-Service Market via Multi-Agent Deep Reinforcement Learning

被引:1
|
作者
Sun, Guolin [1 ,2 ]
Boateng, Gordon Owusu [3 ]
Liu, Kai [1 ,2 ]
Ayepah-Mensah, Daniel [1 ,2 ]
Liu, Guisong [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Intelligent Terminal Key Lab Sichuan Prov, Yibin 644005, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[4] Southwestern Univ Finance & Econ, Sch Comp & Artificial Intelligence, Chengdu 610074, Peoples R China
关键词
Dynamic pricing; MaaS; MADRL; Stackelberg game; vehicle dispatching; STRATEGIES;
D O I
10.1109/TVT.2024.3378968
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Vehicle dispatching in the mobility-as-a-service (MaaS) market has gradually become a situation of multi-service provider competition and coexistence. However, most existing research on vehicle dispatching with dynamic pricing for the MaaS market is still limited to single-service provider scenarios. In this paper, we propose an economic model that analyzes the vehicle dispatching service pricing and demand interactions between multiple mobility service providers (MSPs) and passengers, respectively. We formulate the vehicle dispatching service pricing and demand problem as a two-stage Stackelberg game under different pricing schemes, namely, independent pricing scheme (IPS) and competitive pricing scheme (CPS), considering the vehicle supply-demand relationship and market competition among the MSPs. The MSPs, as leaders, set their service pricing strategies first, and then the passengers, as the followers, determine their service demands. Due to the high-dimensional and complicated nature of the dynamic MaaS market environment, we develop a multi-agent deep reinforcement learning (MADRL) algorithm to achieve the Nash equilibrium (NE) of the formulated game, which indicates the optimal pricing and demand strategies for MSPs and passengers. Simulation results and analysis show that the proposed MADRL-based algorithm converges to the optimal solution and outperforms other benchmark schemes under both IPS and CPS in terms of maximizing MSPs' revenue and protecting passengers' benefits. Furthermore, the proposed MADRL-based algorithm under CPS improves MSPs' market attractiveness and long-term benefits, which encourages MSPs to participate in competitive vehicle dispatching in the MaaS market.
引用
收藏
页码:12010 / 12025
页数:16
相关论文
共 50 条
  • [21] Fair collaborative vehicle routing: A deep multi-agent reinforcement learning approach
    Mak, Stephen
    Xu, Liming
    Pearce, Tim
    Ostroumov, Michael
    Brintrup, Alexandra
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 157
  • [22] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [23] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [24] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [25] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [26] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [27] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [28] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [29] GMIX: Graph-based spatial-temporal multi-agent reinforcement learning for dynamic electric vehicle dispatching system
    Zhou, Tao
    Kris, M. Y. Law
    Creighton, Douglas
    Wu, Changzhi
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 144
  • [30] Dynamic service pricing for brokers in a multi-agent economy
    Dasgupta, P
    Das, R
    FOURTH INTERNATIONAL CONFERENCE ON MULTIAGENT SYSTEMS, PROCEEDINGS, 2000, : 375 - 376