A Medical Image Segmentation Network with Multi-Scale and Dual-Branch Attention

被引:1
|
作者
Zhu, Cancan [1 ]
Cheng, Ke [1 ]
Hua, Xuecheng [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Comp Sci, Zhenjiang 212003, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 14期
关键词
medical image segmentation; deep learning; multi-scale information; attention mechanism;
D O I
10.3390/app14146299
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Accurate medical image segmentation can assist doctors in observing lesion areas and making precise judgments. Effectively utilizing important multi-scale semantic information in local and global contexts is key to improving segmentation accuracy. In this paper, we present a multi-scale dual attention network (MSDA-Net), which enhances feature representation under different receptive fields and effectively utilizes the important multi-scale semantic information from both local and global contexts in medical images. MSDA-Net is a typical encoder-decoder structure and introduces a multi-receptive field densely connected module (MRD) in the decoder. This module captures semantic information across various receptive fields and utilizes dense connections to provide comprehensive and detailed semantic representations. Furthermore, a parallel dual-branch attention module (PDA), incorporating spatial and channel attention, focuses intensively on detailed features within lesion areas. This module enhances feature representation, facilitates the identification of disease boundaries, and improves the accuracy of segmentation. To validate the effectiveness of MSDA-Net, we conducted performance analyses on the CVC-ClinicDB, 2018 Data Science Bowl, ISIC 2018, and colon cancer slice datasets. We also compared our method with U-Net, UNet++, and other methods. The experimental results unequivocally demonstrate that MSDA-Net outperforms these methods, showcasing its superior performance in medical image segmentation tasks.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Attention based multi-scale nested network for biomedical image segmentation
    Cheng, Dapeng
    Deng, Jia
    Xiao, Jinjie
    Yanyan, Mao
    Kang, Jialong
    Gai, Jiale
    Zhang, Baosheng
    Zhao, Feng
    HELIYON, 2024, 10 (14)
  • [42] Dense Dual-Branch Cross Attention Network for Semantic Segmentation of Large-Scale Point Clouds
    Luo, Ziwei
    Zeng, Ziyin
    Tang, Wei
    Wan, Jie
    Xie, Zhong
    Xu, Yongyang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [43] MMDN: Arrhythmia detection using multi-scale multi-view dual-branch fusion network
    Zhu, Yelong
    Jiang, Mingfeng
    He, Xiaoyu
    Li, Yang
    Li, Juan
    Mao, Jiangdong
    Ke, Wei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [44] BiAttentionNet: a dual-branch automatic driving image segmentation network integrating spatial and channel attention mechanisms
    Ruijun Liu
    Yijun Zhang
    Jieying Chen
    Zhigang Wu
    Yaohui Zhu
    Jun Liu
    Min Chen
    Scientific Reports, 15 (1)
  • [45] Multi-Scale and Multi-Branch Convolutional Neural Network for Retinal Image Segmentation
    Jiang, Yun
    Liu, Wenhuan
    Wu, Chao
    Yao, Huixiao
    SYMMETRY-BASEL, 2021, 13 (03): : 1 - 25
  • [46] Dual-Branch Spectral–Spatial Attention Network for Hyperspectral Image Classification
    Zhao, Jinling
    Wang, Jiajie
    Ruan, Chao
    Dong, Yingying
    Huang, Linsheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [47] Food image segmentation based on deep and shallow dual-branch network
    Xiao, Zhiyong
    Li, Yang
    Deng, Zhaohong
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [48] DCMA-Net: A dual channel multi-scale feature attention network for crack image segmentation
    Yan, Yidan
    Sun, Junding
    Zhang, Hongyuan
    Tang, Chaosheng
    Wu, Xiaosheng
    Wang, Shuihua
    Zhang, Yudong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [49] Advanced Text Detection of Container Numbers via Dual-Branch Adaptive Multi-Scale Network
    Yao, Li
    Tang, Chenchen
    Wan, Yan
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [50] MDCF-Net: Multi-Scale Dual-Branch Network for Compressed Face Forgery Detection
    Zhou, Jiting
    Zhao, Xinrui
    Xu, Qian
    Zhang, Pu
    Zhou, Zhihao
    IEEE ACCESS, 2024, 12 : 58740 - 58749