In this article, we study the Euler class of taut foliations on the Dehn fillings of a Q-homology solid torus. We give a necessary and sufficient condition for the Euler class of a foliation transverse to the core of the filling solid torus to vanish. We apply this condition to taut foliations on Dehn fillings of hyperbolic fibered manifolds and obtain many new left-orderable Dehn filling slopes on these manifolds. For instance, we show that when X is the exterior of the pretzel knot P(-2, 3, 2r + 1), for r >= 3, pi(1 )(X(alpha(n))) is left-orderable for a sequence of positive slopes alpha n with alpha(0)= 2g-2 and alpha n -> 2g - 1. Lastly, we prove that given any Q-homology solid torus, the set of slopes for which the corresponding Dehn fillings admit a taut foliation transverse to the core with zero Euler class is nowhere dense in R boolean OR {1/0}.
机构:
Univ Illinois, Dept Math, MC-382,1409 W Green St, Urbana, IL 61801 USAUniv Illinois, Dept Math, MC-382,1409 W Green St, Urbana, IL 61801 USA
Dunfield, Nathan M.
Hoffman, Neil R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, AustraliaUniv Illinois, Dept Math, MC-382,1409 W Green St, Urbana, IL 61801 USA
Hoffman, Neil R.
Licata, Joan E.
论文数: 0引用数: 0
h-index: 0
机构:
Australian Natl Univ, Math Sci Inst, John Dedman Bldg 27, Canberra, ACT 0200, AustraliaUniv Illinois, Dept Math, MC-382,1409 W Green St, Urbana, IL 61801 USA