Shear strength prediction of high strength steel reinforced reactive powder concrete beams

被引:0
|
作者
Jin, Qi-Zhi [1 ]
He, Da-Bo [2 ]
Cao, Xia [3 ]
Fu, Feng [3 ]
Chen, Yi-Cong [4 ]
Zhang, Meng [5 ]
Ren, Yi-Cheng [6 ]
机构
[1] Guilin Univ Technol, Guangxi Key Lab Green Bldg Mat & Construct Ind, Guilin 541004, Peoples R China
[2] Nanning Coll Technol, Sch Civil Engn, Guilin 541006, Peoples R China
[3] City Univ London, Sch Sci & Technol, Dept Engn, London EC1V 0HB, England
[4] Fuzhou Univ, Coll Civil Engn, Fuzhou 350116, Peoples R China
[5] Guilin Univ Technol, Infrastructure Construct Dept, Guilin 541004, Peoples R China
[6] Jiangsu Univ, Jingjiang Coll, Zhenjiang 212028, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
high strength reinforcement; plastic theory; rankine theory; reactive powder concrete; reinforcement ratio; section shape; span to depth ratio; stirrup ratio; strut and tie; BEHAVIOR; MODEL;
D O I
10.12989/acc.2024.17.2.072
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
High Strength steel reinforced Reactive Powder Concrete (RPC) Beam is a new type of beams which has evident advantages than the conventional concrete beams. However, there is limited research on the shear bearing capacity of high- strength steel reinforced RPC structures, and there is a lack of theoretical support for structural design. In order to promote the application of high-strength steel reinforced RPC structures in engineering, it is necessary to select a shear model and derive applicable calculation methods. By considering the shear span ratio, steel fiber volume ratio, longitudinal reinforcement ratio, stirrup ratio, section shape, horizontal web reinforcement ratio, stirrup configuration angle and other variables in the shear test of 32 high-strength steel reinforced RPC beams, the applicability of three theoretical methods to the shear bearing capacity of high- strength steel reinforced RPC beams was explored. The plasticity theory adopts the RPC200 biaxial failure criterion, establishes an equilibrium equation based on the principle of virtual work, and derives the calculation formula for the shear bearing capacity of high-strength steel reinforced RPC beams; Based on the Strut and Tie Theory, considering the softening phenomenon of RPC, a failure criterion is established, and the balance equation and deformation coordination condition of the combined force are combined to derive the calculation formula for the shear bearing capacity of high-strength reinforced RPC beams; Based on the Rankine theory and Rankine failure criterion, taking into account the influence of size effects, a calculation formula for the shear bearing capacity of high-strength reinforced RPC beams is derived. Experimental data is used for verification, and the results are in good agreement with a small coefficient of variation.
引用
收藏
页码:75 / 92
页数:18
相关论文
共 50 条
  • [41] Shear capacity and ductility of high strength reinforced concrete beams
    Sarkar, S
    Adwan, O
    Munday, J
    STRUCTURES IN THE NEW MILLENNIUM, 1997, : 405 - 411
  • [42] SHEAR CAPACITY OF REINFORCED HIGH-STRENGTH CONCRETE BEAMS
    AHMAD, SH
    KHALOO, AR
    POVEDA, A
    JOURNAL OF THE AMERICAN CONCRETE INSTITUTE, 1986, 83 (02): : 297 - 305
  • [43] Behavior and shear strength of steel shape reinforced concrete deep beams
    Chen, Cheng-Cheng
    Lin, Keng-Ta
    Chen, Yu-Jen
    ENGINEERING STRUCTURES, 2018, 175 : 425 - 435
  • [44] Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams
    Arslan, Guray
    KSCE JOURNAL OF CIVIL ENGINEERING, 2014, 18 (02) : 587 - 594
  • [45] SHEAR-STRENGTH OF STEEL FIBER REINFORCED-CONCRETE BEAMS
    SHARMA, AK
    JOURNAL OF THE AMERICAN CONCRETE INSTITUTE, 1986, 83 (04): : 624 - 628
  • [46] Shear Strength of Composite Beams with Steel Fiber-Reinforced Concrete
    Kim, Chul-Goo
    Park, Hong-Gun
    Hong, Geon-Ho
    Kang, Su-Min
    ACI STRUCTURAL JOURNAL, 2019, 116 (06) : 5 - 16
  • [47] Flexural strength of ultra high strength concrete beams reinforced with steel fibers
    Yang, I. H.
    Joh, C.
    Kim, B. S.
    PROCEEDINGS OF THE TWELFTH EAST ASIA-PACIFIC CONFERENCE ON STRUCTURAL ENGINEERING AND CONSTRUCTION (EASEC12), 2011, 14
  • [48] Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams
    Guray Arslan
    KSCE Journal of Civil Engineering, 2014, 18 : 587 - 594
  • [49] Prediction of shear strength for CFRP reinforced concrete beams without stirrups
    Elghandour, Bahaa
    Eltahawy, Reham
    Shedid, Marwan
    Abdelrahman, Amr
    ENGINEERING STRUCTURES, 2023, 284
  • [50] Prediction of shear strength of reinforced concrete beams without web reinforcement
    Kim, JK
    Park, YD
    ACI MATERIALS JOURNAL, 1996, 93 (03) : 213 - 222