A Multi-level Surrogate-assisted Algorithm for Expensive Optimization Problems

被引:0
|
作者
Hu, Liang [1 ,2 ]
Wu, Xianwei [2 ]
Che, Xilong [1 ,2 ]
机构
[1] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun, Peoples R China
[2] Jilin Univ, Coll Comp Sci & Technol, Changchun, Peoples R China
来源
INFORMATION TECHNOLOGY AND CONTROL | 2024年 / 53卷 / 01期
关键词
Surrogate-assisted optimization; Random Forest; Inverse distance weighting; Multi level optimization; GLOBAL OPTIMIZATION; MODEL; SENSITIVITY;
D O I
10.5755/j01.itc.53.1.35922
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of computer science, more and more complex problems rely on the help of computers for solving. When facing the parameter optimization problem of complex models, traditional intelligent optimization algorithms often require multiple iterations on the target problem. It can bring unacceptable costs and resource costs in dealing with these complex problems. In order to solve the parameter optimization of complex problems, in this paper we propose a multi-level surrogate-assisted optimization algorithm (MLSAO). By constructing surrogate models at different levels, the algorithm effectively explores the parameter space, avoiding local optima and enhancing optimization efficiency. The method combines two optimization algorithms, differential evolution (DE) and Downhill simplex method. DE is focused on global level surrogate model optimization. Downhill simplex is concentrated on local level surrogate model update. Random forest and inverse distance weighting (IDW) are constructed for global and local level surrogate model, respectively. These methods leverage their respective advantages at different stages of the algorithm. The MLSAO algorithm is evaluated against other state-of-the-art approaches using benchmark functions of varying dimensions. Comprehensive results from the comparisons showcase the superior performance of the MLSAO algorithm in addressing expensive optimization problems. Moreover, we implement the MLSAO algorithm for tuning precipitation parameters in the Community Earth System Model (CESM). The outcomes reveal its effective enhancement of CESM's simulation accuracy for precipitation in the North Indian Ocean and the North Pacific region. These experiments demonstrate that MLSAO can better address parameter optimization problems under complex conditions.
引用
收藏
页码:280 / 301
页数:22
相关论文
共 50 条
  • [31] A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems
    Gu, Qinghua
    Wang, Qian
    Li, Xuexian
    Li, Xinhong
    KNOWLEDGE-BASED SYSTEMS, 2021, 223
  • [32] Surrogate-Assisted NSGA-II Algorithm for Expensive Multiobjective Optimization
    Yagoubi, Mouadh
    Bederina, Hiba
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 431 - 434
  • [33] A surrogate-assisted bi-swarm evolutionary algorithm for expensive optimization
    Nengxian Liu
    Jeng-Shyang Pan
    Shu-Chuan Chu
    Taotao Lai
    Applied Intelligence, 2023, 53 : 12448 - 12471
  • [34] A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization
    Yu, Mingyuan
    Li, Xia
    Liang, Jing
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (02) : 711 - 729
  • [35] A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization
    Mingyuan Yu
    Xia Li
    Jing Liang
    Structural and Multidisciplinary Optimization, 2020, 61 : 711 - 729
  • [36] Surrogate-assisted push and pull search for expensive constrained multi-objective optimization problems
    Li, Wenji
    Mai, Ruitao
    Wang, Zhaojun
    Qiu, Yifeng
    Xu, Biao
    Hao, Zhifeng
    Fan, Zhun
    Swarm and Evolutionary Computation, 2024, 91
  • [37] A Surrogate-Assisted Many-Objective Evolutionary Algorithm Using Multi- Classification and Coevolution for Expensive Optimization Problems
    Wang, Ruoyu
    Zhou, Yuee
    Chen, Hanning
    Ma, Lianbo
    Zheng, Meng
    IEEE ACCESS, 2021, 9 : 159160 - 159174
  • [38] A bagging-based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
    Yuanchao Liu
    Jianchang Liu
    Shubin Tan
    Yongkuan Yang
    Fei Li
    Neural Computing and Applications, 2022, 34 : 12097 - 12118
  • [39] A bagging-based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
    Liu, Yuanchao
    Liu, Jianchang
    Tan, Shubin
    Yang, Yongkuan
    Li, Fei
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14): : 12097 - 12118
  • [40] A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
    Tian, Ye
    Hu, Jiaxing
    He, Cheng
    Ma, Haiping
    Zhang, Limiao
    Zhang, Xingyi
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 80