Data-Driven Strategies for Modal Consensus and Output Synchronization

被引:0
|
作者
Monti, Andrea [1 ]
Galeani, Sergio [2 ]
Possieri, Corrado [2 ,3 ]
Sassano, Mario [2 ]
机构
[1] German Aerosp Ctr DLR, Inst Software Technol, D-38108 Braunschweig, Germany
[2] Univ Roma Tor Vegata, Dipartimento Ingn Civile & Ingn Informat DICII, I-00133 Rome, Italy
[3] Ist Anal Sistemi Informat A Ruberti Consiglio Nazl, I-00185 Rome, Italy
来源
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS | 2024年 / 11卷 / 03期
关键词
Synchronization; Multi-agent systems; Steady-state; Network systems; Trajectory; Task analysis; Symbols; Consensus; data-driven control; linear systems; multiagent systems;
D O I
10.1109/TCNS.2023.3338255
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, a control design strategy to achieve modal consensus and synchronization in a multiagent system is envisioned. The proposed solution relies only on input/output data locally collected by each agent and does not require any a priori knowledge of the underlying dynamics. Furthermore, while agreement on a prescribed modal content can be achieved for any generic initial conditions of the agents, it is shown that the synchronization task requires instead to address the problem of transferring, in finite time, the state of a system from an initial state to a desired terminal state in a completely data-driven framework. This control problem, interesting per se, is therefore tackled and solved here. The above concepts are then illustrated by means of numerical case studies.
引用
收藏
页码:1527 / 1536
页数:10
相关论文
共 50 条
  • [41] Data-driven strategies for optimization of integrated chemical plants
    Ma, Kaiwen
    V. Sahinidis, Nikolaos
    Amaran, Satyajith
    Bindlish, Rahul
    Bury, Scott J.
    Griffith, Devin
    Rajagopalan, Sreekanth
    COMPUTERS & CHEMICAL ENGINEERING, 2022, 166
  • [42] On Data-Driven Stochastic Output-Feedback Predictive Control
    TU Dortmund University, Institute for Energy Systems, Energy Efficiency and Energy Economics, Dortmund, Germany
    不详
    IEEE Trans Autom Control, 1600,
  • [43] Data-Driven Strategies for Coping with Incomplete DVL Measurements
    Cohen, Nadav
    Klein, Itzik
    OCEANS 2024 - SINGAPORE, 2024,
  • [44] Data-driven Optimal Output Regulation With Assured Convergence Rate
    Jiang Y.
    Fan J.-L.
    Chai T.-Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (04): : 980 - 991
  • [45] Data-driven decision making strategies applied to marketing
    Borges, Marcus
    Bernardino, Jorge
    Pedrosa, Isabel
    PROCEEDINGS OF 2021 16TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2021), 2021,
  • [46] Infectious epidemics and the research output of nations: A data-driven analysis
    Turki, Houcemeddine
    Hadj Taieb, Mohamed Ali
    Ben Aouicha, Mohamed
    Pouris, Anastassios
    JOURNAL OF INFORMATION SCIENCE, 2023, 49 (02) : 411 - 436
  • [47] Data-Driven Output Feedback Control Based on Behavioral Approach
    Qin, Zhaoming
    Karimi, Alireza
    2024 AMERICAN CONTROL CONFERENCE, ACC 2024, 2024, : 3954 - 3959
  • [48] Data-Driven Output Channel Design for Maximizing Passivity Index
    Tanemura, Masaya
    Azuma, Shun-ichi
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6646 - 6650
  • [49] Data-driven strategies for optimal bicycle network growth
    Natera Orozco, Luis Guillermo
    Battiston, Federico
    Iniguez, Gerardo
    Szell, Michael
    ROYAL SOCIETY OPEN SCIENCE, 2020, 7 (12):
  • [50] Data-driven output regulation control for constrained linear systems
    Xia, Chaoyu
    Dong, Yi
    Wang, Chaoli
    Xu, Shengyuan
    SCIENCE CHINA-INFORMATION SCIENCES, 2025, 68 (03)